Stone–Čech compactification

Results: 18



#Item
1Mathematical analysis / Functions and mappings / Elementary mathematics / Decision theory / Utility / Preference / Ultrafilter / Stone–Čech compactification / Measure / Mathematics / Topology / General topology

Topology and Markets Graciela Chichilnisky ` Editor Fields Institute Communications Volume 22, 1999

Add to Reading List

Source URL: chichilnisky.com

Language: English - Date: 2013-05-16 17:49:40
2Stone–Čech compactification / Wallman compactification / Alexandroff extension / Filter / Ultrafilter / Compact space / Net / Closed set / Topology / General topology / Compactification

Jordan Journal of Mathematics and Statistics (JJMS) 7(1), 2014, ppCOMPACTIFICATIONS AND F-SPECTRAL SPACES CEREN SULTAN ELMALI (1)

Add to Reading List

Source URL: journals.yu.edu.jo

Language: English - Date: 2014-04-16 05:35:42
3Topological spaces / Compactification / Tychonoff space / Locally compact space / Stone–Čech compactification / Hausdorff space / Normal space / Product topology / Compact space / Topology / General topology / Separation axioms

ˇ The Stone-Cech compactification of Tychonoff spaces Jordan Bell

Add to Reading List

Source URL: individual.utoronto.ca

Language: English - Date: 2014-06-27 17:02:21
4General topology / Functional analysis / Hahn–Banach theorem / Stone–Čech compactification / Banach–Alaoglu theorem / Banach space / Filter / Topological vector space / Locally convex topological vector space / Topology / Mathematics / Mathematical analysis

pozn/clanky/jerisonreferat.tex October 4, 2011 http://thales.doa.fmph.uniba.sk/sleziak/papers/semtrf.html Meyer Jerison: The set of all generalized limits of bounded sequences

Add to Reading List

Source URL: thales.doa.fmph.uniba.sk

Language: English - Date: 2011-10-04 12:47:12
5Functional analysis / General topology / Banach–Alaoglu theorem / Stone–Čech compactification / Banach space / Hahn–Banach theorem / Ultrafilter / Leonidas Alaoglu / Krein–Milman theorem / Topology / Mathematics / Mathematical analysis

Preliminaries Banach limits Main result Meyer Jerison: The set of all generalized limits of bounded sequences

Add to Reading List

Source URL: thales.doa.fmph.uniba.sk

Language: English - Date: 2011-11-03 15:10:41
6General topology / Non-standard analysis / Ultrafilter / Ramsey theory / Boolean algebra / Stone–Čech compactification / Filter / Ideal / Axiom of choice / Mathematics / Topology / Order theory

Universit¨at Leipzig Fakult¨at f¨ ur Mathematik und Informatik Mathematisches Institut Diplomarbeit

Add to Reading List

Source URL: lips.informatik.uni-leipzig.de

Language: English - Date: 2012-06-06 09:02:11
7General topology / Non-standard analysis / Ultrafilter / Stone–Čech compactification / Idempotence / Filter / Projection / Constructible universe / Boolean-valued model / Mathematics / Topology / Order theory

arXiv:0711.0484v2 [math.DS] 5 Nov[removed]IDEMPOTENT ULTRAFILTERS AND POLYNOMIAL RECURRENCE CHRISTIAN SCHNELL Abstract. We give a new proof of a polynomial recurrence result due to

Add to Reading List

Source URL: arxiv.org

Language: English - Date: 2013-02-14 04:18:56
8Order theory / Non-standard analysis / Adjoint functors / Boolean algebra / Ultrafilter / Stone–Čech compactification / Filter / Monad / Ultraproduct / Topology / Mathematics / General topology

Theory and Applications of Categories, Vol. 28, No. 13, 2013, pp. 332–370. CODENSITY AND THE ULTRAFILTER MONAD TOM LEINSTER Abstract. Even a functor without an adjoint induces a monad, namely, its codensity monad; thi

Add to Reading List

Source URL: www.emis.de

Language: English - Date: 2013-07-01 12:49:00
9Topological spaces / Mathematical analysis / Compact space / Stone–Čech compactification / Locally compact space / Closed set / Compact operator / Sequentially compact space / Metric space / Topology / General topology / Compactification

COMPACTNESS AND COMPACTIFICATION TERENCE TAO In mathematics, it is well known that the behaviour of finite sets and the behaviour of infinite sets can be rather different. For instance, each of the following statements i

Add to Reading List

Source URL: www.math.ucla.edu

Language: English - Date: 2007-11-23 14:39:20
UPDATE