<--- Back to Details
First PageDocument Content
Quaternions / Orientation / Analytic geometry / Rotational symmetry / Euler angles / Rotation / Slerp / Tetrahedron / Quaternions and spatial rotation / Geometry / Physics / Angle
Date: 2001-02-14 11:50:44
Quaternions
Orientation
Analytic geometry
Rotational symmetry
Euler angles
Rotation
Slerp
Tetrahedron
Quaternions and spatial rotation
Geometry
Physics
Angle

Add to Reading List

Source URL: web.mit.edu

Download Document from Source Website

File Size: 846,32 KB

Share Document on Facebook

Similar Documents

Robotics / Robot control / Artificial intelligence / Visual servoing / Kalman filter / Simultaneous localization and mapping / Pose / Video tracking / Quaternions and spatial rotation / Motion planning

International Symposium on Experimental Robotics (ISER), 2014 Online Camera Registration for Robot Manipulation Neil Dantam, Heni Ben Amor, Henrik Christensen, and Mike Stilman∗ Institute for Robotics and Intelligent

DocID: 1qO1L - View Document

Geometry / Mathematics / Algebra / Orientation / Classical mechanics / Kinematics / Rotational symmetry / Analytic geometry / Rotation / Angle / Curl / Quaternions and spatial rotation

Microsoft Word - Rotate1WS.doc

DocID: 1qnxr - View Document

Orientation / Angle / Rigid bodies / 3D computer graphics / Euclidean geometry / Inertial measurement unit / Gyroscope / Yaw / Quaternions and spatial rotation / Rotation matrix / Kalman filter / Euler angles

Robust Sensor Fusion for Robot Attitude Estimation

DocID: 1pzlc - View Document

Vectors / Analytic geometry / Vector calculus / Linear algebra / Elementary mathematics / Euclidean vector / Quaternions and spatial rotation / Rotation / Cross product / Computer mouse / Kinematics / Cartesian coordinate system

Outline CE318: High-level Games Development Lecture 2: 3D Games and User Input 1

DocID: 1poBb - View Document

Quaternions / Rotations in 4-dimensional Euclidean space / Quaternions and spatial rotation / Rotation matrix / Versor / Rotation / Matrix / Orthogonal matrix / Orientation / Rotation formalisms in three dimensions / Charts on SO

A MATRIX–BASED PROOF OF THE QUATERNION REPRESENTATION THEOREM FOR FOUR-DIMENSIONAL ROTATIONS arXiv:math/0501249v1 [math.GM] 16 Jan 2005

DocID: 1p4Ge - View Document