Loss functions for classification

Results: 13



#Item
1Machine learning / Statistics / Learning / Regression analysis / Structured prediction / Support vector machines / Statistical classification / Ordinal regression / Loss function / Mathematical optimization / Convex optimization / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

Add to Reading List

Source URL: stephenbach.net

Language: English - Date: 2013-11-15 12:01:19
2Regression analysis / Structured prediction / Support vector machines / Statistical classification / Machine learning / Ordinal regression / Loss function / Mathematical optimization / Hinge loss / Loss functions for classification

Large-margin Structured Learning for Link Ranking Stephen H. Bach Bert Huang Lise Getoor Department of Computer Science University of Maryland College Park, MD 20742

Add to Reading List

Source URL: psl.umiacs.umd.edu

Language: English - Date: 2013-11-15 11:47:48
3Mathematical optimization / Gradient descent / Convex function / Convex optimization / Loss functions for classification

Randomized Smoothing Techniques in Optimization

Add to Reading List

Source URL: stanford.edu

Language: English - Date: 2014-10-16 22:22:19
4Convex optimization / Mathematical optimization / Stochastic optimization / Machine learning / Gradient descent / Subgradient method / Stochastic gradient descent / Proximal gradient methods for learning / Perceptron / BroydenFletcherGoldfarbShanno algorithm / Online machine learning / Loss functions for classification

Adaptive Subgradient Methods Adaptive Subgradient Methods for Online Learning and Stochastic Optimization∗ John Duchi

Add to Reading List

Source URL: stanford.edu

Language: English - Date: 2014-09-05 13:17:02
5

Composite Loss Functions and Multivariate Regression; Sparse PCA G. Obozinski, B. Taskar, and M. I. JordanJoint covariate selection and joint subspace selection for multiple classification problems. Statistics a

Add to Reading List

Source URL: mlg.eng.cam.ac.uk

Language: English - Date: 2009-09-09 20:54:06
    6Regression analysis / Loss function / Statistical theory / Scoring rule / Linear regression / Ordinal number / Constructible universe / Statistics / Econometrics / Decision theory

    LOSS FUNCTIONS FOR BINARY CLASSIFICATION AND CLASS PROBABILITY ESTIMATION YI SHEN A DISSERTATION

    Add to Reading List

    Source URL: stat.wharton.upenn.edu

    Language: English - Date: 2005-10-15 23:54:08
    7Regression analysis / Statistical models / Econometrics / Scoring rule / Kullback–Leibler divergence / Generalized linear model / Bregman divergence / Loss function / Divergence / Statistics / Decision theory / Statistical theory

    Loss Functions for Binary Class Probability Estimation and Classification: Structure and Applications Andreas Buja 1

    Add to Reading List

    Source URL: stat.wharton.upenn.edu

    Language: English - Date: 2005-11-03 13:35:44
    8Cybernetics / Learning / Machine learning / Boolean satisfiability problem / Theoretical computer science / Applied mathematics / Mathematics

    NICTA ANU SUMMER SCHOLARS PROJECTS – [removed]TITLE Design for Wireless Human Body Area Communications Power control games for wireless ad-hoc network communications Comparison of Classification-Based Loss Functions Mul

    Add to Reading List

    Source URL: www.nicta.com.au

    Language: English - Date: 2015-02-09 05:28:13
    9Machine learning / Parts of speech / Knowledge representation / WordNet / Word-sense disambiguation / Classifier / Statistical classification / Australian National University / Linguistics / Computational linguistics / Science

    Optimisation of Robust Loss Functions for Weakly-Labelled Image Taxonomies Julian McAuley ANU Stanford

    Add to Reading List

    Source URL: cseweb.ucsd.edu

    Language: English - Date: 2014-07-10 21:47:06
    10Support vector machine / Linear classifier / Function / Loss function / Structured SVM / Statistics / Statistical classification / Machine learning

    Optimization of Robust Loss Functions for Weakly-Labeled Image Taxonomies: An ImageNet Case Study Julian J. McAuley1 , Arnau Ramisa2 , and Tib´erio S. Caetano1 1

    Add to Reading List

    Source URL: cseweb.ucsd.edu

    Language: English - Date: 2014-07-10 21:47:00
    UPDATE