<--- Back to Details
First PageDocument Content
Monoidal categories / Enriched category / Closed monoidal category / Adjoint functors / Metric space / Monoidal functor / Functor / Monad / Sheaf / Category theory / Algebra / Mathematics
Date: 2002-08-31 13:48:13
Monoidal categories
Enriched category
Closed monoidal category
Adjoint functors
Metric space
Monoidal functor
Functor
Monad
Sheaf
Category theory
Algebra
Mathematics

Add to Reading List

Source URL: tac.mta.ca

Download Document from Source Website

File Size: 2,77 MB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Abstract algebra / Semigroup theory / Monoidal categories / Functional programming / Programming idioms / Algebraic structures / Monoid / Monad / Functor / Semigroup action

How to Twist Pointers without Breaking Them Satvik Chauhan ∗ Piyush P. Kurur Brent A. Yorgey

DocID: 1rpNK - View Document

Algebra / Abstract algebra / Mathematics / Homological algebra / Functors / Category theory / Algebraic geometry / Module theory / Motive / Sheaf / Algebraic K-theory / Monoidal functor

501 Documenta Math. Tamagawa Numbers for Motives with (Non-Commutative) Coefficients

DocID: 1rmzL - View Document

Algebra / Mathematics / Category theory / Monoidal categories / Abstract algebra / Algebraic topology / Operad theory / Adjoint functors / Monoidal functor / Functor / PRO / Equivalence of categories

879 Documenta Math. Rectification of Algebras and Modules Vladimir Hinich

DocID: 1rdIB - View Document

Algebra / Abstract algebra / Mathematics / Category theory / Functor / Bicategory / F-algebra / Category of rings / Monoidal category / Morphism / Center / Category

707 Documenta Math. Drinfeld Centers for Bicategories Ehud Meir and Markus Szymik

DocID: 1qNL6 - View Document

Category theory / Algebra / Mathematics / Monoidal categories / Monoid / Enriched category / Adjoint functors / Cartesian closed category / Coproduct / Bicategory / Functor / Sheaf

Monoidal Indeterminates and Categories of Possible WorldsI C. Hermida, R. D. Tennent∗ School of Computing, Queen’s University, Kingston, Canada K7L 3N6 Abstract Given any symmetric monoidal category C, a small symmet

DocID: 1qIeP - View Document