<--- Back to Details
First PageDocument Content
Mathematical analysis / Nuclear space / Hilbert space / Compact operator / Vector space / Banach space / Von Neumann algebra / Approximation property / Lp space / Algebra / Operator theory / Mathematics
Date: 2011-01-26 11:41:17
Mathematical analysis
Nuclear space
Hilbert space
Compact operator
Vector space
Banach space
Von Neumann algebra
Approximation property
Lp space
Algebra
Operator theory
Mathematics

grothendieck.24-jan-11.dvi

Add to Reading List

Source URL: www.math.tamu.edu

Download Document from Source Website

File Size: 776,79 KB

Share Document on Facebook

Similar Documents

SYMPLECTIC NON-SQUEEZING OF THE KDV FLOW J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO Abstract. We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korte

DocID: 1sHZx - View Document

Operator theory / Banach spaces / Functional analysis / Fourier analysis / Reflexive space / Banach algebra / Compact operator / Approximation property / Bounded operator / Limit superior and limit inferior / Dual space / Frchet space

M -ideals of compact operators into `p Kamil John1 and Dirk Werner Abstract. We show for 2 ≤ p < ∞ and subspaces X of quotients of Lp with a 1-unconditional finite-dimensional Schauder decomposition that K(X, `p ) is

DocID: 1pjS9 - View Document

Operator theory / Fourier analysis / Functional analysis / Linear algebra / Banach spaces / Approximation property / Banach algebra / Compact operator / Dual space / Operator / Multiplier / Hilbert space

Bibliography [1] Y. Abramovich. New classes of spaces on which compact operators satisfy the Daugavet equation. To appear in J. Operator Theory. [2] Y. Abramovich. A generalization of a theorem of J. Holub. Proc. Amer.

DocID: 1pf5d - View Document

Mathematical analysis / Mathematics / Operator theory / Lipschitz maps / Fourier analysis / Approximation theory / Constructivism / Modulus of continuity / Limit of a function / Continuous function / Universal property / Contraction

Effective Uniform Bounds from Proofs in Abstract Functional Analysis Ulrich Kohlenbach Department of Mathematics Darmstadt University of Technology Schlossgartenstraße 7

DocID: 1oiUp - View Document

Mathematical analysis / Mathematics / Operator theory / Functional analysis / Invariant subspace problem / Invariant subspace / Reflexive space / Banach space / Per Enflo / Compact operator / Tsirelson space / Approximation property

Banach spaces with the “scalar-plus-compact” and “invariant subspace” properties. Spiros Argyros (NTUA) We will discuss two structural properties of the space of boundedlinear operators L(X) of a Banach space X.

DocID: 1mAMj - View Document