<--- Back to Details
First PageDocument Content
Mathematics / Analytic number theory / Special functions / Group theory / Riemann surfaces / Congruence subgroup / Theta function / Jacobi form / Orbifold / Mathematical analysis / Modular forms / Complex analysis
Date: 2010-09-05 09:07:38
Mathematics
Analytic number theory
Special functions
Group theory
Riemann surfaces
Congruence subgroup
Theta function
Jacobi form
Orbifold
Mathematical analysis
Modular forms
Complex analysis

Jacobi Forms Victoria de Quehen McGill University

Add to Reading List

Source URL: www.math.mcgill.ca

Download Document from Source Website

File Size: 247,35 KB

Share Document on Facebook

Similar Documents

Cycles and Subschemes 14Cxx [1] Timothy G. Abbott, Kiran S. Kedlaya, and David Roe, Bounding Picard numbers of surfaces using p-adic cohomology, Anita Buckley and Bal´azs Szendr¨oi, Orbifold Riemann-Roch for

DocID: 1voxn - View Document

A panaroma of the fundamental group of the modular orbifold A. Muhammed Uluda˘g∗and Ayberk Zeytin∗∗ Department of Mathematics, Galatasaray University ˙ C

DocID: 1tBnz - View Document

Mathematics / Algebra / Abstract algebra / Algebraic topology / Simplicial complex / Abstract simplicial complex / Simplicial set / Simplex / Topological graph / Orbifold / Building

On Topological Minors in Random Simplicial Complexes∗ Anna Gundert† Uli Wagner‡ arXiv:1404.2106v2 [math.CO] 4 May 2015

DocID: 1rnFz - View Document

Huson / Orbifold notation / Bioinformatics

Daniel Huson Bibliography Jan-2015

DocID: 1rhZV - View Document

Abstract algebra / Algebra / Mathematics / Algebraic geometry / Homological algebra / Symbol / Valuation / Sheaf / Motive / Orbifold / Holomorphic functional calculus

165 Documenta Math. On the Leading Terms of Zeta Isomorphisms and p-Adic L-functions in Non-Commutative Iwasawa Theory

DocID: 1rfLe - View Document