<--- Back to Details
First PageDocument Content
Number theory / Eulerian number / Summation / Series / Leonhard Euler / Binomial theorem / Factorial / Bernoulli number / Mathematics / Combinatorics / Integer sequences
Date: 2013-02-21 19:00:20
Number theory
Eulerian number
Summation
Series
Leonhard Euler
Binomial theorem
Factorial
Bernoulli number
Mathematics
Combinatorics
Integer sequences

Add to Reading List

Source URL: go.helms-net.de

Download Document from Source Website

File Size: 299,98 KB

Share Document on Facebook

Similar Documents

ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS arXiv:1610.09837v1 [math.CO] 31 Oct 2016 NICOLAS BONICHON, MIREILLE BOUSQUET-MÉLOU, PAUL DORBEC, AND CLAIRE PENNARUN

DocID: 1sPOP - View Document

Integer sequences / Combinatorics / Number theory / Enumerative combinatorics / Binomial coefficient / Bernoulli number / Generating function / Eulerian number / Permutation / Random permutation statistics / Binomial series

A symmetrical Eulerian identity Fan Chung∗ Ron Graham∗ Don Knuth†

DocID: 1pALU - View Document

Eulerian path / NP-complete problems / BEST theorem / Degree / Connectivity / Hamiltonian path / Tree / Graph / Route inspection problem / Graph theory / Mathematics / Theoretical computer science

Counting Eulerian Circuits is #P-Complete Graham R. Brightwell Abstract We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P. The method employed is mod

DocID: 18y9b - View Document

Integer sequences / Binomial coefficient / Stirling numbers of the second kind / Stirling number / Factorial / Recurrence relation / Eulerian number / Binomial series / Meijer G-function / Mathematics / Combinatorics / Mathematical analysis

PDF Document

DocID: NkKB - View Document

Binomial coefficient / Eulerian number / Summation / Sigma-algebra / Permutation / Mathematics / Combinatorics / Integer sequences

07 New Formula for the Sum of Powers 7.1 Expression with binomial coefficients of a factorial Formula[removed]S. Ruiz ) When n

DocID: 860k - View Document