<--- Back to Details
First PageDocument Content
Integer sequences / Binomial coefficient / Stirling numbers of the second kind / Stirling number / Factorial / Recurrence relation / Eulerian number / Binomial series / Meijer G-function / Mathematics / Combinatorics / Mathematical analysis
Date: 2011-11-21 10:47:28
Integer sequences
Binomial coefficient
Stirling numbers of the second kind
Stirling number
Factorial
Recurrence relation
Eulerian number
Binomial series
Meijer G-function
Mathematics
Combinatorics
Mathematical analysis

Add to Reading List

Source URL: cs.uwaterloo.ca

Download Document from Source Website

File Size: 237,04 KB

Share Document on Facebook

Similar Documents

Mathematics / Mathematical analysis / Mathematical induction / Integer sequences / Approximation theory / Mathematical series / Binomial coefficient / Aurifeuillean factorization

Algorithms and Data Structures (WS15/16) Example Solutions for Unit 4 Problem 1 skipped

DocID: 1rcMI - View Document

Mathematical analysis / Mathematics / Combinatorics / Peetre theorem / Binomial coefficient

Bryan Rainey Junior, Computer Science, Purdue University Problem of the Week Problem No. 5 (Fall 2014 Series)

DocID: 1pUyc - View Document

Integer sequences / Combinatorics / Number theory / Enumerative combinatorics / Binomial coefficient / Bernoulli number / Generating function / Eulerian number / Permutation / Random permutation statistics / Binomial series

A symmetrical Eulerian identity Fan Chung∗ Ron Graham∗ Don Knuth†

DocID: 1pALU - View Document

Options / Mathematical finance / BlackScholes model / Risk-neutral measure / Put option / Call option / Volatility / Binomial options pricing model / Lattice model

THE BINOMIAL OPTION PRICING MODEL The Binomial Option Pricing Model The authors consider the case of option pricing for a binomial process—the first in a series of articles in Financial Engineering. by Simon Benninga

DocID: 1pvZq - View Document

PreCalculus Formulas Sequences and Series: Binomial Theorem ⎛ n⎞ ( a + b) = ∑ ⎜ ⎟ a n− k b k

DocID: 1nm56 - View Document