<--- Back to Details
First PageDocument Content
Probability theory / Statistical models / Networks / Bayesian network / Bayesian inference / Markov random field / Expectation–maximization algorithm / Belief propagation / Gibbs sampling / Statistics / Bayesian statistics / Graphical models
Date: 2009-09-08 20:07:47
Probability theory
Statistical models
Networks
Bayesian network
Bayesian inference
Markov random field
Expectation–maximization algorithm
Belief propagation
Gibbs sampling
Statistics
Bayesian statistics
Graphical models

Contents Acknowledgments xxiii

Add to Reading List

Source URL: pgm.stanford.edu

Download Document from Source Website

File Size: 107,68 KB

Share Document on Facebook

Similar Documents

Observational astronomy / Astronomy / Parallel computing / Bayesian network / Sloan Digital Sky Survey / Computing / Bayesian inference / Astronomical survey / Gravitational lens / Computer cluster

Cataloging the Visible Universe through Bayesian Inference at Petascale Jeffrey Regier∗ , Kiran Pamnany† , Keno Fischer‡ , Andreas Noack§ , Maximilian Lam∗ , Jarrett Revels§ , Steve Howard¶ , Ryan Giordano¶ ,

DocID: 1xVn9 - View Document

Humancomputer interaction / Artificial intelligence / Robot control / Virtual reality / Multimodal interaction / Video game controllers / Robot navigation / Haptic technology / Haptic perception / Simultaneous localization and mapping / Occupancy grid mapping / Kalman filter

Haptic SLAM: an ideal observer model for Bayesian inference of object shape and hand pose from contact dynamics Feryal M. P. Behbahani1 , Guillem Singla–Buxarrais2 and A. Aldo Faisal1,2,3 1

DocID: 1xTqR - View Document

Improving the Identifiability of Neural Networks for Bayesian Inference Arya A. Pourzanjani∗, Richard M. Jiang∗, Linda R. Petzold Department of Computer Science University of California, Santa Barbara

DocID: 1uZys - View Document

MAP estimate on GLMs Stochastic Gradient Descent (SGD) MAP to Bayesian Inference

DocID: 1uTAz - View Document

Bayesian Analysis, Number 4, pp. 817–846 Inference of global clusters from locally distributed data

DocID: 1uGu0 - View Document