Sparse approximation

Results: 86



#Item
1

Low Power Sparse Approximation on Reconfigurable Analog Hardware Samuel Shapero Student Member, IEEE*, Adam Charles Student Member, IEEE, Christopher Rozell Senior Member, IEEE, and Paul Hasler Senior Member, IEEE Abstr

Add to Reading List

Source URL: siplab.gatech.edu

Language: English - Date: 2015-10-26 16:10:23
    2

    Sparse BRDF Approximation using Compressive Sensing Benoît Zupancic, Cyril Soler To cite this version: Benoît Zupancic, Cyril Soler. Sparse BRDF Approximation using Compressive Sensing. 6th Siggraph Conference and Exhi

    Add to Reading List

    Source URL: hal.inria.fr

    - Date: 2018-03-27 22:00:34
      3

      Approximation Bounds for Sparse Principal Component Analysis Alexandre d’Aspremont, CNRS & Ecole Polytechnique. With Francis Bach, INRIA-ENS and Laurent El Ghaoui, U.C. Berkeley.

      Add to Reading List

      Source URL: www.di.ens.fr

      - Date: 2013-09-09 17:46:45
        4

        Approximation Bounds for Sparse PCA Alexandre d’Aspremont, CNRS & Ecole Polytechnique with Francis Bach, INRIA-ENS and Laurent El Ghaoui, U.C. Berkeley A. d’Aspremont

        Add to Reading List

        Source URL: www.di.ens.fr

        - Date: 2013-09-09 17:44:09
          5Linguistics / Mathematics / Lexical semantics / Semantics / Artificial neural networks / Natural language processing / Word-sense disambiguation / Word embedding / Word2vec / Sparse approximation / Word-sense induction / Discourse analysis

          Linear Algebraic Structure of Word Senses, with Applications to Polysemy arXiv:1601.03764v1 [cs.CL] 14 JanSanjeev Arora

          Add to Reading List

          Source URL: arxiv.org

          Language: English - Date: 2016-01-17 20:31:07
          6Linear algebra / Mathematics / Matrix / Norm

          Norms of random submatrices and sparse approximation Joel A. Tropp 1 Applied & Computational Mathematics, California Institute of Technology, Pasadena, CAReceived *****; accepted after revision +++++ Present

          Add to Reading List

          Source URL: users.cms.caltech.edu

          Language: English - Date: 2008-07-28 20:32:09
          7Statistics / Mathematical analysis / Probability / Probability distributions / Operations research / Convex optimization / Normal distribution / Linear regression / Linear programming / Sparse approximation

          Multi-Stage Dantzig Selector Ji Liu, Peter Wonka, Jieping Ye Arizona State University {ji.liu,peter.wonka,jieping.ye}@asu.edu

          Add to Reading List

          Source URL: peterwonka.net

          Language: English - Date: 2011-01-09 20:39:46
          8Algebra / Mathematics / Mathematical analysis / Operator theory / Linear algebra / Matrix / Basis / Inner product space / Partial differential equations / Differential forms on a Riemann surface / NeumannPoincar operator

          ON THE CONDITIONING OF RANDOM SUBDICTIONARIES JOEL A. TROPP Abstract. An important problem in the theory of sparse approximation is to identify wellconditioned subsets of vectors from a general dictionary. In most cases,

          Add to Reading List

          Source URL: users.cms.caltech.edu

          Language: English - Date: 2007-09-11 17:01:58
          9Algebra / Mathematics / Multivariate statistics / Numerical analysis / Numerical linear algebra / Iterative methods / Dimension reduction / Principal component analysis / Singular value decomposition / Stochastic optimization / Nonlinear dimensionality reduction / Sparse dictionary learning

          I will discuss recent work on randomized algorithms for low-rank approximation and principal component analysis (PCA). The talk will focus on efforts that move beyond the extremely fast, but relatively crude approximatio

          Add to Reading List

          Source URL: mmds-data.org

          Language: English - Date: 2016-06-23 15:50:48
          10Mathematics / Numerical analysis / Algebra / Linear algebra / Convex optimization / Operations research / Computational statistics / Mathematical optimization / K-SVD / Sparse approximation / Deep learning / Stochastic gradient descent

          Simple, Efficient, and Neural Algorithms for Sparse Coding Sanjeev Arora∗ Princeton University, Computer Science Department

          Add to Reading List

          Source URL: jmlr.org

          Language: English - Date: 2015-07-20 20:08:35
          UPDATE