<--- Back to Details
First PageDocument Content
Geometry / Topology / Metric geometry / Banach fixed-point theorem / Lipschitz continuity / Contraction mapping / Metric space / Hilbert space / Contraction / Mathematics / Mathematical analysis / Operator theory
Date: 2011-05-06 03:11:54
Geometry
Topology
Metric geometry
Banach fixed-point theorem
Lipschitz continuity
Contraction mapping
Metric space
Hilbert space
Contraction
Mathematics
Mathematical analysis
Operator theory

Lectures On Some Fixed Point Theorems Of Functional Analysis

Add to Reading List

Source URL: www.math.tifr.res.in

Download Document from Source Website

File Size: 579,80 KB

Share Document on Facebook

Similar Documents

Graph theory / Dimension / Isoperimetric dimension / Mathematical analysis / Cheeger constant / Planar graph / Vertex-transitive graph / Expander graph / Graph / Connectivity / Regular graph / End

Coarse Geometry and Randomness Itai Benjamini October 30, 2013 Contents 1 Introductory graph and metric notions

DocID: 1xW27 - View Document

Vladimir S. Matveev (Jena) Vladimir S. Matveev (Jena) How to reconstruct a metric by its unparameterized geodesics. Lorenz Geometry, Granada,

DocID: 1rR2F - View Document

Topology / Mathematics / Space / Differential topology / Differential geometry / Foliation / Algebraic topology / Homotopy theory / Fibration / Ellipse

A Lorentz metric on the manifold of positive definite (2 x 2)-matrices and foliations by ellipses Marcos Salvai ´ FaMAF (UNC) – CIEM (CONICET), Cordoba,

DocID: 1rsXz - View Document

Geometry / Metric geometry / Space / Ultrametric space / Operator theory / Differential forms on a Riemann surface / Modulus of continuity

Lassoing Phylogenetic Trees Katharina Huber, School of Computing Sciences, University of East Anglia, UK September 23, 2015

DocID: 1rrmV - View Document

Geometry / Space / Cubes / Metric geometry / Bipartite graphs / Space-filling polyhedra / Zonohedra / -hyperbolic space / Hypercube / Duality / Curve / Median graph

HagenQuasiArb10Feb2103.dvi

DocID: 1rmpQ - View Document