<--- Back to Details
First PageDocument Content
Computing / Strength of materials / Multidisciplinary design optimization / Shape optimization / Algorithm / Topology optimization / Lagrange multiplier / Static single assignment form / ALGOL 68 / Mathematical optimization / Mathematics / Programming language theory
Date: 2014-08-28 19:56:48
Computing
Strength of materials
Multidisciplinary design optimization
Shape optimization
Algorithm
Topology optimization
Lagrange multiplier
Static single assignment form
ALGOL 68
Mathematical optimization
Mathematics
Programming language theory

Computational Design of Actuated Deformable Characters

Add to Reading List

Source URL: www.disneyresearch.com

Download Document from Source Website

File Size: 1.020,74 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Mathematics / Calculus / Multivariable calculus / Differential calculus / Convex analysis / Mathematical optimization / Derivative / Lagrange multiplier / Quasiconvex function / Hessian matrix / Gradient

REVIEW SHEET FOR FINAL: ADVANCED MATH 195, SECTION 59 (VIPUL NAIK) To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet to all review sessions. 1. Directional derivatives and gr

DocID: 1rrJ2 - View Document

Mathematical analysis / Mathematics / Analysis / Differential geometry / Differential calculus / Multivariable calculus / Generalizations of the derivative / Mathematical optimization / Derivative / Tangent space / Directional derivative / Lagrange multiplier

LAGRANGE MULTIPLIERS MATH 195, SECTION 59 (VIPUL NAIK) Corresponding material in the book: Section 14.8 What students should definitely get: The Lagrange multiplier condition (one constraint, two constraints and in princ

DocID: 1rgkS - View Document

Mathematical optimization / Mathematical analysis / Analysis / Mathematics / Shape optimization / Constraint / Constrained optimization / Feasible region / Optimization problem / Lagrange multiplier / Penalty method

Interactive Design Exploration for Constrained Meshes Bailin Deng∗, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg, Mark Pauly Computer Graphics and Geometry Laboratory, EPFL, CH-1015 Lausanne, Switz

DocID: 1r5Ee - View Document

Mathematical optimization / Mathematical analysis / Analysis / Mathematics / Trajectory optimization / Nonlinear programming / KarushKuhnTucker conditions / Automatic differentiation / Lagrange multiplier / BroydenFletcherGoldfarbShanno algorithm / Hessian matrix / Linear programming

Higher-Order Derivatives in Engineering Applications

DocID: 1r00C - View Document

Mathematical analysis / Numerical analysis / Mathematical optimization / Multivariable calculus / Convex analysis / Stochastic optimization / Convex optimization / Stochastic gradient descent / Hessian matrix / Gradient descent / Lagrange multiplier / Higher-order singular value decomposition

JMLR: Workshop and Conference Proceedings vol 40:1–46, 2015 Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition Rong Ge

DocID: 1qai5 - View Document