<--- Back to Details
First PageDocument Content
Algebraic groups / Representation theory / Lie algebras / Reductive group / Unipotent / Linear algebraic group / Semisimple Lie algebra / Group scheme / Hopf algebra / Abstract algebra / Algebra / Lie groups
Date: 2011-04-01 20:48:54
Algebraic groups
Representation theory
Lie algebras
Reductive group
Unipotent
Linear algebraic group
Semisimple Lie algebra
Group scheme
Hopf algebra
Abstract algebra
Algebra
Lie groups

Algebraic Groups, Lie Groups, and their Arithmetic Subgroups

Add to Reading List

Source URL: jmilne.org

Download Document from Source Website

File Size: 2,76 MB

Share Document on Facebook

Similar Documents

Problems for Representations of Linear Algebraic Groups Milan Lopuha¨a November 22nd , 2016 L 1. Let g be a semisimple Lie algebra. Let h be a toral subalgebra, and let g = α∈h∗ gα

DocID: 1uIIJ - View Document

Algebra / Mathematics / Abstract algebra / Lie groups / Polynomials / Unitary group / Ring / Automorphism / Diagonalizable matrix / Degree of a continuous mapping / Factorization of polynomials over finite fields / Finite field

A Characterization of Semisimple Plane Polynomial Automorphisms. Jean-Philippe FURTER, Dpt. of Math., Univ. of La Rochelle, av. M. Crépeau, La Rochelle, FRANCE email:

DocID: 1raZ0 - View Document

Algebra / Abstract algebra / Geometry / Lie groups / Lattice / Mutation / Permutation group / Weight

85 Documenta Math. Stably Cayley Semisimple Groups Mikhail Borovoi and Boris Kunyavski˘ı

DocID: 1qQkm - View Document

Lie groups / Algebra / Abstract algebra / Mathematical analysis / Maximal compact subgroup / Lie algebra / Topological group / Zonal spherical function / Plancherel theorem for spherical functions

31 Documenta Math. How Frequent Are Discrete Cyclic Subgroups of Semisimple Lie Groups?

DocID: 1qNES - View Document

Algebra / Abstract algebra / Geometry / Lie groups / Lattice / Mutation / Permutation group / Weight / Subgroup

85 Documenta Math. Stably Cayley Semisimple Groups Mikhail Borovoi and Boris Kunyavski˘ı

DocID: 1qlqo - View Document