<--- Back to Details
First PageDocument Content
Integer sequences / Number theory / Polynomials / Binomial theorem / Binomial / Factorial / Combination / Permutation / Coefficient / Mathematics / Combinatorics / Algebra
Date: 2013-11-06 00:06:16
Integer sequences
Number theory
Polynomials
Binomial theorem
Binomial
Factorial
Combination
Permutation
Coefficient
Mathematics
Combinatorics
Algebra

1 Supporting Australian Mathematics Project

Add to Reading List

Source URL: www.amsi.org.au

Download Document from Source Website

File Size: 662,48 KB

Share Document on Facebook

Similar Documents

Innovations in permutation-based crypto Joan Daemen1,2 based on joint work with Guido Bertoni3 , Seth Hoffert, Michaël Peeters1 , Gilles Van Assche1 and Ronny Van Keer1

DocID: 1vpk0 - View Document

A so ware interface for K In this note, we propose an interface to K at the level of the sponge and duplex constructions, and inside K at the level of the K - f permutation. The purpose is twofold.

DocID: 1vlQi - View Document

Juxtaposing Catalan permutation classes with monotone ones R. Brignall∗ J. Sliaˇcan∗

DocID: 1vdyZ - View Document

Exponential Sums and Permutation Polynomials Ramachandra’s birthday Exponential Sums and

DocID: 1vc68 - View Document

Farfalle and Kravatte Parallel permutation-based cryptography Guido Bertoni1 Joan Daemen1,2 Michaël Peeters1 Gilles Van Assche1 Ronny Van Keer1 1 STMicroelectronics

DocID: 1v8QE - View Document