<--- Back to Details
First PageDocument Content
Statistical inference / Robot control / Computational statistics / Robot navigation / Particle filter / Kalman filter / Monte Carlo localization / Estimation theory / Video tracking / Statistics / Monte Carlo methods / Probability and statistics
Date: 2008-10-18 20:44:55
Statistical inference
Robot control
Computational statistics
Robot navigation
Particle filter
Kalman filter
Monte Carlo localization
Estimation theory
Video tracking
Statistics
Monte Carlo methods
Probability and statistics

Monte Carlo Localization for Mobile Robots y

Add to Reading List

Source URL: www.ri.cmu.edu

Download Document from Source Website

File Size: 3,23 MB

Share Document on Facebook

Similar Documents

Auton Robot:293–309 DOIs10514Vision-based maze navigation for humanoid robots Antonio Paolillo1 · Angela Faragasso2 · Giuseppe Oriolo1 · Marilena Vendittelli1

DocID: 1uZjR - View Document

Robot navigation in multi-terrain outdoor environments using discrete representations and continuous vector fields Guilherme A. S. Pereira Luiz Chaimowicz Daniel S. C. de Almeida

DocID: 1uURu - View Document

1 Cooperative Navigation for Mixed Human-Robot Teams Using Haptic Feedback Stefano Scheggi, Member, IEEE, Marco Aggravi, Student Member, IEEE, and Domenico Prattichizzo, Fellow, IEEE

DocID: 1uQu6 - View Document

In Proc. of the German Conference on Robotics (ROBOTIK), Munich, Germany, MayEfficient Mobile Robot Navigation using 3D Surfel Grid Maps Jochen Kläß, Jörg Stückler, and Sven Behnke Autonomous Intelligent Syste

DocID: 1triX - View Document

Robot control / Statistics / Robot navigation / Estimation theory / Engineering / Artificial intelligence / Linear filters / Simultaneous localization and mapping / Monte Carlo methods / Kalman filter / Robot calibration / Sensor

Simultaneous Learning of Motion and Sensor Model Parameters for Mobile Robots Teddy N. Yap, Jr. and Christian R. Shelton Department of Computer Science and Engineering University of California, Riverside, CA 92521, USA {

DocID: 1rgWF - View Document