<--- Back to Details
First PageDocument Content
Mathematical analysis / Nuclear space / Hilbert space / Compact operator / Vector space / Banach space / Von Neumann algebra / Approximation property / Lp space / Algebra / Operator theory / Mathematics
Date: 2011-01-26 11:41:17
Mathematical analysis
Nuclear space
Hilbert space
Compact operator
Vector space
Banach space
Von Neumann algebra
Approximation property
Lp space
Algebra
Operator theory
Mathematics

grothendieck.24-jan-11.dvi

Add to Reading List

Source URL: www.math.tamu.edu

Download Document from Source Website

File Size: 776,79 KB

Share Document on Facebook

Similar Documents

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 19, 2010 (DayLet (X, µ) be a measure space with µ(X) < ∞. For q > 0, let Lq = Lq (X, µ) denote the Banach space completion o

DocID: 1tTIW - View Document

Index α-Hölder continuous, 25 Banach space, 32 uniformly, 26 (α, γ )-Hölder condition, 32 Γ -differentiable, 325

DocID: 1safF - View Document

NIGEL KALTON’S WORK IN ISOMETRICAL BANACH SPACE THEORY DIRK WERNER 1. Introduction Nigel Kalton was one of the greatest mathematicians of the last 40 years,

DocID: 1s27x - View Document

Algebra / Mathematics / Spectral theory / Linear algebra / Mathematical physics / Banach space / Almost Mathieu operator / Spectrum / Eigenvalues and eigenvectors / Normed vector space / Norm / Space

A Numerical Analysis of the Spectrum of the Almost Mathieu Operator by sunmi yang

DocID: 1rndN - View Document

Mathematical analysis / Mathematics / Functional analysis / Operator theory / Linear algebra / Banach space / Compact operator / Dual norm / Projection / Continuous function / HahnBanach theorem / C*-algebra

Some lifting theorems for bounded linear operators DIRK WERNER I. Mathematisches Institut, Freie Universit¨at Berlin, Arnimallee 3, D-1000 Berlin 33, Federal Republic of Germany. e-mail: 1 INTR

DocID: 1rjnh - View Document