<--- Back to Details
First PageDocument Content
Numbers / Arithmetic / Theoretical computer science / Data types / Binary arithmetic / Floating point / Machine epsilon / Rounding / Loss of significance / Computer arithmetic / Numerical analysis / Mathematics
Date: 2002-01-30 16:02:46
Numbers
Arithmetic
Theoretical computer science
Data types
Binary arithmetic
Floating point
Machine epsilon
Rounding
Loss of significance
Computer arithmetic
Numerical analysis
Mathematics

What Every Computer Scientist Should Know About Floating-Point Arithmetic D

Add to Reading List

Source URL: www.cse.msu.edu

Download Document from Source Website

File Size: 265,83 KB

Share Document on Facebook

Similar Documents

Computer arithmetic / Computing / Fixed-point arithmetic / Multiplyaccumulate operation / Precision / Rounding / FLOPS / 128-bit / Machine epsilon / IEEE floating point

Fast Reproducible Floating-Point Summation James Demmel, Hong Diep Nguyen ParLab - EECS - UC Berkeley ARITH 21 April 7-10, 2013

DocID: 1r45M - View Document

Mathematics / Computer arithmetic / Mathematical logic / Theory of computation / Numerical analysis / Arithmetic / Interval arithmetic / Interval / Constructible universe / Ordinal number / NC / Machine epsilon

BIT 39(3), pp. 539–560, 1999 FAST AND PARALLEL INTERVAL ARITHMETIC SIEGFRIED M. RUMP Inst. of Computer Science III, Technical University Hamburg-Harburg, Eißendorfer Str. 38, 21071 Hamburg, Germany.

DocID: 1qF1b - View Document

Computer arithmetic / Abstract interpretation / Interval arithmetic / Rounding / Floating point / Affine arithmetic / Interval / Function / Limit of a function / NaN / Fixed-point arithmetic / Machine epsilon

Static Analysis of Finite Precision Computations Eric Goubault and Sylvie Putot CEA LIST, Laboratory for the Modelling and Analysis of Interacting Systems, Point courrier 94, Gif-sur-Yvette, FFrance, Firstname.Las

DocID: 1pipx - View Document

Computer arithmetic / GNU MPFR / Interval arithmetic / Floating point / Rounding / GNU Multiple Precision Arithmetic Library / Precision / Machine epsilon / Arbitrary-precision arithmetic / IEEE floating point / Significant figures / Interval

Motivations for an arbitrary precision interval arithmetic and the MPFI library N. Revol ()∗ ´ INRIA, Project Arenaire, LIP (CNRS/ENSL/INRIA/UCBL), Ecole Normale

DocID: 1mOXx - View Document

References Presented at the DMA Analytics-CRM Community Town Hall on Machine Learning & Automated Modeling - March 18, 2015 Source: Peter Zajonc, Senior Director, Epsilon Marty Rose, Senior Data Scientist, Acxiom Useful

DocID: 1jYXE - View Document