<--- Back to Details
First PageDocument Content
K-nearest neighbor algorithm / Regression analysis / Sensitivity analysis / Local regression / Data analysis / Geographic information system / FOCAL / Recommender system / GeoDA / Statistics / Science / Search algorithms
Date: 2011-11-09 11:13:29
K-nearest neighbor algorithm
Regression analysis
Sensitivity analysis
Local regression
Data analysis
Geographic information system
FOCAL
Recommender system
GeoDA
Statistics
Science
Search algorithms

Pointwise Local Pattern Exploration for Sensitivity Analysis

Add to Reading List

Source URL: davis.wpi.edu

Download Document from Source Website

File Size: 1,62 MB

Share Document on Facebook

Similar Documents

Collective intelligence / Information systems / Information science / Information / E-commerce / Computing / Recommender system / Cold start / Food / Preference elicitation / Nutrition / Personalization

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1xVQo - View Document

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1tE3G - View Document

Privacy Assessment of Data Flow Graphs for an Advanced Recommender System in the Smart Grid Fabian Knirsch1 , Dominik Engel1 , Cristian Neureiter1 , Marc Frincu2 , and Viktor Prasanna2 1

DocID: 1sXaB - View Document

A Novel Recommender System in IoT Remo Manuel Frey1, Runhua Xu1, and Alexander Ilic2 I. ABSTRACT In Internet of Things (IoT), selling smart physical objects together with a compatible mobile app becomes an upcoming

DocID: 1sIQs - View Document

RiVal – A Toolkit to Foster Reproducibility in Recommender System Evaluation Alan Said Alejandro Bellogín

DocID: 1sgiJ - View Document