<--- Back to Details
First PageDocument Content
Exponentiation / Factorial / Logarithm / Pi / Karp–Lipton theorem / Arithmetic circuit complexity / Mathematics / Mathematical analysis / Exponentials
Date: 2013-01-31 23:01:51
Exponentiation
Factorial
Logarithm
Pi
Karp–Lipton theorem
Arithmetic circuit complexity
Mathematics
Mathematical analysis
Exponentials

Add to Reading List

Source URL: fpt.wdfiles.com

Download Document from Source Website

File Size: 445,95 KB

Share Document on Facebook

Similar Documents

Complexity classes / P versus NP problem / NP / P / Low / EXPTIME / NC / Parameterized complexity / Karp–Lipton theorem / Theoretical computer science / Computational complexity theory / Applied mathematics

Algorithms: Complexity Classes and Lower Bounds Martin Held FB Computerwissenschaften Universität Salzburg A-5020 Salzburg, Austria

DocID: 17DR8 - View Document

Exponentiation / Factorial / Logarithm / Pi / Karp–Lipton theorem / Arithmetic circuit complexity / Mathematics / Mathematical analysis / Exponentials

PDF Document

DocID: 17g12 - View Document

Complexity classes / Probabilistic complexity theory / Structural complexity theory / Arthur–Merlin protocol / Karp–Lipton theorem / Quantum complexity theory / NP / Interactive proof system / IP / Theoretical computer science / Computational complexity theory / Applied mathematics

Polylogarithmic-round Interactive Proofs for coNP Collapse the Exponential Hierarchy Alan L. Selman ∗

DocID: c5rU - View Document

NP / Computational complexity theory / Operator theory / Karp–Lipton theorem / 3-dimensional matching / Mathematics / Applied mathematics / Function

Canonical Disjoint NP-Pairs of Propositional Proof Systems Christian Glaßer ∗ Alan L. Selman†

DocID: c0h0 - View Document

Applied mathematics / Constructible universe / Polynomial / Time hierarchy theorem / Algebraic geometry / Real closed field / Karp–Lipton theorem / Constructible number / Mathematics / Structural complexity theory / Abstract algebra

A COMPLEX ANALOGUE OF TODA’S THEOREM SAUGATA BASU Abstract. Toda [28] proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P#P , namely the class of languages that can be decided

DocID: 8HD1 - View Document