<--- Back to Details
First PageDocument Content
Lie groups / Algebraic groups / Lie algebras / Reductive group / Semisimple Lie algebra / Claude Chevalley / Lie–Kolchin theorem / Linear algebraic group / Representation theory / Abstract algebra / Algebra / Group theory
Date: 2010-01-14 11:29:33
Lie groups
Algebraic groups
Lie algebras
Reductive group
Semisimple Lie algebra
Claude Chevalley
Lie–Kolchin theorem
Linear algebraic group
Representation theory
Abstract algebra
Algebra
Group theory

364 BOOK REVIEWS

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 616,70 KB

Share Document on Facebook

Similar Documents

Problems for Representations of Linear Algebraic Groups Milan Lopuha¨a November 22nd , 2016 L 1. Let g be a semisimple Lie algebra. Let h be a toral subalgebra, and let g = α∈h∗ gα

DocID: 1uIIJ - View Document

Algebra / Mathematics / Abstract algebra / Lie groups / Polynomials / Unitary group / Ring / Automorphism / Diagonalizable matrix / Degree of a continuous mapping / Factorization of polynomials over finite fields / Finite field

A Characterization of Semisimple Plane Polynomial Automorphisms. Jean-Philippe FURTER, Dpt. of Math., Univ. of La Rochelle, av. M. Crépeau, La Rochelle, FRANCE email:

DocID: 1raZ0 - View Document

Algebra / Abstract algebra / Geometry / Lie groups / Lattice / Mutation / Permutation group / Weight

85 Documenta Math. Stably Cayley Semisimple Groups Mikhail Borovoi and Boris Kunyavski˘ı

DocID: 1qQkm - View Document

Lie groups / Algebra / Abstract algebra / Mathematical analysis / Maximal compact subgroup / Lie algebra / Topological group / Zonal spherical function / Plancherel theorem for spherical functions

31 Documenta Math. How Frequent Are Discrete Cyclic Subgroups of Semisimple Lie Groups?

DocID: 1qNES - View Document

Algebra / Abstract algebra / Geometry / Lie groups / Lattice / Mutation / Permutation group / Weight / Subgroup

85 Documenta Math. Stably Cayley Semisimple Groups Mikhail Borovoi and Boris Kunyavski˘ı

DocID: 1qlqo - View Document