<--- Back to Details
First PageDocument Content
Silhouette / Variable / K-nearest neighbor algorithm / Cosmic distance ladder / Level of measurement / K-medoids / Clustering high-dimensional data / Statistics / Cluster analysis / Medoid
Date: 2015-01-06 16:08:23
Silhouette
Variable
K-nearest neighbor algorithm
Cosmic distance ladder
Level of measurement
K-medoids
Clustering high-dimensional data
Statistics
Cluster analysis
Medoid

NCSS Statistical Software NCSS.com Chapter 447

Add to Reading List

Source URL: ncss.wpengine.netdna-cdn.com

Download Document from Source Website

File Size: 92,02 KB

Share Document on Facebook

Similar Documents

CSE 291: Unsupervised learning Spring 2008 Lecture 3 — The k-medoid clustering problem

DocID: 1sUmw - View Document

Information science / Recommender systems / Statistics / Information / Collaboration / Collective intelligence / Collaborative filtering / Medoid / Cluster analysis

DiRec: Diversified Recommendations for Semantic-less Collaborative Filtering Rubi Boim, Tova Milo, Slava Novgorodov School of Computer Science Tel-Aviv University {boim,milo,slavanov}@post.tau.ac.il

DocID: 1qQaJ - View Document

Means / Cluster analysis / K-means clustering / Hierarchical clustering / Medoid / K-medoids / Centroid / Determining the number of clusters in a data set / K-medians clustering

Microsoft PowerPoint - GeocompCluster.ppt

DocID: 1pATd - View Document

Cluster analysis / Means / Medoid

1 • http://www.datacron-project.eu/ (awarded in Big Data Reseacrh call

DocID: 1pwSl - View Document

Data mining / Recommender systems / Collaboration / Collective intelligence / Medoid / Collaborative filtering / Cluster analysis / Nearest neighbor search

DiRec: Diversified Recommendations for Semantic-less Collaborative Filtering Rubi Boim, Tova Milo, Slava Novgorodov School of Computer Science Tel-Aviv University {boim,milo,slavanov}@post.tau.ac.il

DocID: 1pmQQ - View Document