First Page | Document Content | |
---|---|---|
![]() Date: 2008-03-31 15:07:20Complex analysis Pi Integer sequences Number theory Inverse trigonometric functions Trigonometric functions Polylogarithm Factorial Chudnovsky algorithm Mathematics Mathematical analysis Trigonometry | Source URL: math.bu.eduDownload Document from Source WebsiteFile Size: 88,58 KBShare Document on Facebook |
![]() | 297 Doc. Math. J. DMV Correction to the Paper \Classical Motivic PolylogarithmDocID: 1sfTb - View Document |
![]() | 73 Documenta Math. Specialization of the p-adic Polylogarithm to p-th Power Roots of UnityDocID: 1rQtM - View Document |
![]() | Documenta Mathematica Band 15, 2010 Jianqiang Zhao Standard Relations of Multiple Polylogarithm Values at Roots of Unity Indranil Biswas and Norbert HoffmannDocID: 1rHtM - View Document |
![]() | 27 Doc. Math. J. DMV Classical Motivic Polylogarithm According to Beilinson and DeligneDocID: 1rATB - View Document |
![]() | 27 Doc. Math. J. DMV Classical Motivic Polylogarithm According to Beilinson and DeligneDocID: 1rAw7 - View Document |