<--- Back to Details
First PageDocument Content
Complex analysis / Pi / Integer sequences / Number theory / Inverse trigonometric functions / Trigonometric functions / Polylogarithm / Factorial / Chudnovsky algorithm / Mathematics / Mathematical analysis / Trigonometry
Date: 2008-03-31 15:07:20
Complex analysis
Pi
Integer sequences
Number theory
Inverse trigonometric functions
Trigonometric functions
Polylogarithm
Factorial
Chudnovsky algorithm
Mathematics
Mathematical analysis
Trigonometry

Add to Reading List

Source URL: math.bu.edu

Download Document from Source Website

File Size: 88,58 KB

Share Document on Facebook

Similar Documents

297 Doc. Math. J. DMV Correction to the Paper \Classical Motivic Polylogarithm

DocID: 1sfTb - View Document

73 Documenta Math. Specialization of the p-adic Polylogarithm to p-th Power Roots of Unity

DocID: 1rQtM - View Document

Documenta Mathematica Band 15, 2010 Jianqiang Zhao Standard Relations of Multiple Polylogarithm Values at Roots of Unity Indranil Biswas and Norbert Hoffmann

DocID: 1rHtM - View Document

27 Doc. Math. J. DMV Classical Motivic Polylogarithm According to Beilinson and Deligne

DocID: 1rATB - View Document

27 Doc. Math. J. DMV Classical Motivic Polylogarithm According to Beilinson and Deligne

DocID: 1rAw7 - View Document