Homotopy

Results: 1053



#Item
771Mathematics / Topology / Waldhausen category / Cofibration / Algebraic K-theory / Weak equivalence / Simplicial set / Q / Nerve / Abstract algebra / Homotopy theory / Category theory

K-THEORY OF A WALDHAUSEN CATEGORY AS A SYMMETRIC SPECTRUM MITYA BOYARCHENKO Abstract. If C is a Waldhausen category (i.e., a “category with cofibrations and weak equivalences”), it is known that one can define its K-

Add to Reading List

Source URL: www.math.uchicago.edu

Language: English - Date: 2007-11-04 13:29:42
772Homotopy theory / Morphisms / Category theory / Algebraic structures / Adjoint functors / Isomorphism / Groupoid / Equivalence of categories / Equality / Abstract algebra / Mathematics / Algebra

Structuralism, Invariance, and Univalence∗ Steve Awodey March 4, 2014 Abstract The recent discovery of an interpretation of constructive type theory into abstract homotopy theory suggests a new approach to the

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:23
773Abstract algebra / Homotopy type theory / Groupoid / Homotopy / Lambda calculus / Path / Fundamental group / Function / Hurewicz theorem / Homotopy theory / Topology / Mathematics

Recent Work in Homotopy Type Theory Steve Awodey Carnegie Mellon University AMS Baltimore January 2014

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:30
774Abstract algebra / Homotopy theory / Higher category theory / Algebraic structures / PRO / Groupoid / Braided monoidal category / Functor / Category / Category theory / Algebra / Monoidal categories

What n-Categories Should Be Like John C. Baez A %%

Add to Reading List

Source URL: www.ima.umn.edu

Language: English - Date: 2004-06-11 10:36:24
775Abstract algebra / Homotopy type theory / Homotopy group / Homotopy / Model category / Vladimir Voevodsky / Mathematical logic / Type theory / Out / Homotopy theory / Topology / Mathematics

Voevodsky’s Univalence Axiom in homotopy type theory ´ Steve Awodey, Alvaro Pelayo and Michael A. Warren

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:23
776Homotopy theory / Category theory / Algebraic topology / Higher category theory / Algebraic structures / Groupoid / Homotopy / Fundamental group / Equivalence relation / Abstract algebra / Mathematics / Topology

arXiv:0906.4521v1 [math.LO] 24 Jun 2009 ¨ COMPLEXES MARTIN-LOF S. AWODEY, P. HOFSTRA, AND M. A. WARREN Dedicated to Per Martin-L¨

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:23
777Mathematics / Groupoid / Homotopy type theory / Homotopy / Model category / Fundamental group / CW complex / Category theory / Homotopy theory / Topology / Abstract algebra

INTRODUCTION TO THE UNIVALENT FOUNDATIONS OF MATHEMATICS CONSTRUCTIVE TYPE THEORY AND HOMOTOPY STEVE AWODEY CARNEGIE MELLON UNIVERSITY

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:30
778Homotopy type theory / Homotopy / Mathematical logic / Algebraic topology / Homotopy group / Homotopy theory / Topology / Mathematics

Homotopy Type Theory and Univalent Foundations of Mathematics Steve Awodey Carnegie Mellon University

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:30
779Mathematics / Topology / Algebraic topology / Higher category theory / Model category / Groupoid / Simplicial set / Alexander Grothendieck / Model theory / Abstract algebra / Homotopy theory / Category theory

Homotopy Theoretic Aspects of Constructive Type Theory Michael Alton Warren August 2008 Carnegie Mellon University

Add to Reading List

Source URL: www.andrew.cmu.edu

Language: English - Date: 2014-06-01 15:27:30
780Algebraic topology / Abstract algebra / Metaphysics / Fiber bundles / Homotopy theory / Problem of universals / Universal / Bundle theory / Connection / Topology / Ontology / Differential topology

Locations∗ John Hawthorne and Theodore Sider Philosophical Topics[removed]): 53–76. Think of “locations” very abstractly, as positions in a space, any space.

Add to Reading List

Source URL: tedsider.org

Language: English - Date: 2009-06-06 15:12:05
UPDATE