<--- Back to Details
First PageDocument Content
Functional analysis / Wavelets / Time–frequency analysis / Numerical analysis / Harmonic wavelet transform / Frequency domain / Time series / Time–frequency representation / Spectral density / Mathematical analysis / Mathematics / Signal processing
Date: 2007-06-15 13:06:22
Functional analysis
Wavelets
Time–frequency analysis
Numerical analysis
Harmonic wavelet transform
Frequency domain
Time series
Time–frequency representation
Spectral density
Mathematical analysis
Mathematics
Signal processing

Evolutionary Power Spectrum Estimation using Harmonic Wavelets

Add to Reading List

Source URL: mceer.buffalo.edu

Download Document from Source Website

File Size: 310,34 KB

Share Document on Facebook

Similar Documents

p corresponding to max Periodogram Power Spectral Density Noise = 0 , Seed =

DocID: 1vhAf - View Document

TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES CARSTEN JENTSCH AND MARKUS PAULY Abstract. In this paper we investigate the testing problem that the spectral density matrices of several, not necessa

DocID: 1uEfg - View Document

ON THE SPECTRAL DENSITY FUNCTION OF THE LAPLACIAN OF A GRAPH arXiv:1205.2321v2 [math.CO] 3 Jun 2013 ¨

DocID: 1rPZw - View Document

Mathematical analysis / Digital signal processing / Signal processing / Mathematics / Fourier analysis / Unitary operators / Joseph Fourier / Spectral density estimation / Discrete Fourier transform / Fast Fourier transform / Fourier transform / Filter bank

© DIGITAL VISION A Tutorial on Fast Fourier Sampling [How to apply it to problems] C. Gilbert,

DocID: 1rugj - View Document

Noise / Sound / Signal processing / Mathematical analysis / Gradient noise / Perlin noise / Value noise / Colors of noise / Pink noise / White noise / Spectral density estimation / Procedural texture

EUROGRAPHICSH. Hauser and E. Reinhard STAR – State of The Art Report State of the Art in Procedural Noise Functions A. Lagae1,2 S. Lefebvre2,3 R. Cook4 T. DeRose4 G. Drettakis2 D.S. Ebert5 J.P. Lewis6 K. Perlin

DocID: 1r69c - View Document