<--- Back to Details
First PageDocument Content
Number theory / On-Line Encyclopedia of Integer Sequences / Factorial / Simon Plouffe / Neil Sloane / Pi / Sloane / Handbook of mathematical functions / Mathematics / Mathematical analysis / Integer sequences
Date: 2014-05-28 20:29:31
Number theory
On-Line Encyclopedia of Integer Sequences
Factorial
Simon Plouffe
Neil Sloane
Pi
Sloane
Handbook of mathematical functions
Mathematics
Mathematical analysis
Integer sequences

Microsoft Word - exact.doc

Add to Reading List

Source URL: www.plouffe.fr

Download Document from Source Website

File Size: 165,75 KB

Share Document on Facebook

Similar Documents

Combinatorics / On-Line Encyclopedia of Integer Sequences / DIMACS / Neil Sloane / Sequence / E / Simon Plouffe / Integer / Sloane / Mathematics / Elementary mathematics / Integer sequences

DIMACS Conference on Challenges Identifying Integer Sequences: Celebrating 50 Years of the OEIS DIMACS Center, Rutgers University Piscataway, New Jersey October 9 – 10, 2014

DocID: xg1j - View Document

Peter Borwein / Jonathan Borwein / Bailey–Borwein–Plouffe formula / Simon Plouffe / Graduate Texts in Mathematics / Srinivasa Ramanujan / Riemann hypothesis / Tamas Erdelyi / David H. Bailey / Mathematics / Pi / Mathematical analysis

Peter Borwein Professor and Burnaby Mountain Chair, Executive Director IRMACS (Interdisciplinary Research in the Mathematical and Computational Sciences) Simon Fraser University, Vancouver, B.C. DEGREES

DocID: 90BA - View Document

Peter Borwein / Bailey–Borwein–Plouffe formula / Approximations of π / Simon Plouffe / Experimental mathematics / Randomness / Normal number / Number / Irrational number / Mathematics / Mathematical analysis / Pi

PDF Document

DocID: 8YBy - View Document

Logarithms / Exponentials / Binary arithmetic / Pi / Floating point / Arbitrary-precision arithmetic / Factorial / Approximations of π / Transcendental number / Mathematics / Computer arithmetic / Integer sequences

ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS David Bailey, Peter Borwein1 and Simon Plouffe Abstract. We give algorithms for the computation of the d-th digit of certain transcendental

DocID: 8X4k - View Document

Integer sequences / Computer arithmetic / Bailey–Borwein–Plouffe formula / Approximations of π / Pi / Simon Plouffe / Floating point / Multiplication / Algorithm / Mathematics / Numbers / Elementary arithmetic

Microsoft Word - articlepi.docx

DocID: 7J18 - View Document