<--- Back to Details
First PageDocument Content
Representation theory / Quantum group / Kac–Moody algebra / Lie algebra / Categorification / D-module / Graded algebra / Abstract algebra / Algebras / Ring theory
Date: 2013-05-13 01:46:50
Representation theory
Quantum group
Kac–Moody algebra
Lie algebra
Categorification
D-module
Graded algebra
Abstract algebra
Algebras
Ring theory

Asia Pacific Mathematics Newsletter 1 An An Elementary

Add to Reading List

Source URL: www.asiapacific-mathnews.com

Download Document from Source Website

File Size: 154,30 KB

Share Document on Facebook

Similar Documents

July 10, 2006 On the unitary dual of Hecke algebras with unequal parameters Dan Ciubotaru 1. The graded Hecke algebra and Langlands classification

DocID: 1uL1i - View Document

DEMAZURE MODULES, FUSION PRODUCTS AND Q–SYSTEMS VYJAYANTHI CHARI AND R.VENKATESH Abstract. In this paper, we introduce a family of indecomposable finite–dimensional graded modules for the current algebra associated t

DocID: 1sq0u - View Document

Algebra / Abstract algebra / Mathematics / Algebras / Graded ring / Quadratic algebra / Resolution / Hilbert series and Hilbert polynomial / Graded / Tensor algebra / D-module / Tensor product

1301 Documenta Math. On the Multi-Koszul Property for Connected Algebras

DocID: 1rsV3 - View Document

Algebra / Abstract algebra / Mathematics / Homological algebra / Sheaf theory / Representation theory / Cohomology / Graded ring / Tate cohomology group / Stable module category / D-module / Sheaf

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 356, Number 9, Pages 3621–3668 SArticle electronically published on December 12, 2003

DocID: 1qYsY - View Document

Algebra / Mathematics / Abstract algebra / Ring theory / Polynomials / Algebraic geometry / Commutative algebra / Multilinear algebra / Exterior algebra / Homogeneous polynomial / Graded / Ring

XIDEAL Gr¨ obner Bases for Exterior Algebra David Hartley ∗† Institute for Algorithms and Scientific Computing GMD — German National Research Center

DocID: 1qVAg - View Document