<--- Back to Details
First PageDocument Content
Integer sequences / Infinite group theory / Topological groups / Elementary number theory / Profinite group / Fibonacci number / Factorial / P-adic number / Integer / Mathematics / Abstract algebra / Number theory
Date: 2006-01-02 13:17:44
Integer sequences
Infinite group theory
Topological groups
Elementary number theory
Profinite group
Fibonacci number
Factorial
P-adic number
Integer
Mathematics
Abstract algebra
Number theory

Hendrik Lenstra Profinite Fibonacci numbers

Add to Reading List

Source URL: www.math.leidenuniv.nl

Download Document from Source Website

File Size: 350,53 KB

Share Document on Facebook

Similar Documents

Tuesday Daily Gather: Fibonacci. by Brian Jonah Brian’s brother has a favorite positive integer n, and he wants to find a Fibonacci number Fk such that n | Fk . Obviously, the trivial case F0 = 0 = n · 0 satisfies th

DocID: 1vqGw - View Document

Tuesday Daily Gather: Fibonacci. by Brian Jonah Brian’s brother has a favorite positive integer n, and he wants to find a Fibonacci number Fk such that n | Fk . Obviously, the trivial case F0 = 0 = n · 0 satisfies th

DocID: 1v4RY - View Document

THE NUMBER OF k-DIGIT FIBONACCI NUMBERS JAN-CHRISTOPH PUCHTA Define a(k) to be the number of k-digit Fibonacci numbers. For n > 5, we have 1.6Fn−1 < Fn < 1.7Fn−1 . Thus if Fn is the least k-digit Fibonacci number, we

DocID: 1uaXr - View Document

Software engineering / Computer programming / Computing / Scheduling / Functional languages / Concurrent programming languages / Operations research / Parallel computing / Cilk / Work stealing / Pure / Fibonacci number

Design of Parallel and High-Performance Computing Fall 2014 Lecture: Scheduling Instructor: Torsten Hoefler & Markus Püschel

DocID: 1rfSj - View Document

Mathematics / Elementary mathematics / Integer sequences / On-Line Encyclopedia of Integer Sequences / Sequence / Recurrence relation / Fibonacci number / Integer

The OEIS, Mathematical Discovery, and Insomnia Neil J. A. Sloane The OEIS Foundation and Rutgers University ACMES Conference, May 2016

DocID: 1r6nO - View Document