<--- Back to Details
First PageDocument Content
Discrete geometry / Convex analysis / Euclidean plane geometry / K-set / Crossing number / Convex hull / Convex function / Arrangement of lines / Pseudotriangle / Mathematics / Geometry / Discrete mathematics
Date: 2008-10-16 12:11:14
Discrete geometry
Convex analysis
Euclidean plane geometry
K-set
Crossing number
Convex hull
Convex function
Arrangement of lines
Pseudotriangle
Mathematics
Geometry
Discrete mathematics

Discrete Comput Geom 19:373–Discrete & Computational Geometry

Add to Reading List

Source URL: www.cs.duke.edu

Download Document from Source Website

File Size: 111,63 KB

Share Document on Facebook

Similar Documents

Designing crossing schemes Once you have selected mutant lines for your gene(s) of interest, there are a number of ways in which you can proceed depending on the aim of your study. Here we describe a couple of common use

DocID: 1uOBM - View Document

SINO-PLATONIC PAPERS Number 39 August, 1993 A Material Case for a Late Bering Strait Crossing

DocID: 1tlJJ - View Document

Graph theory / Planar graphs / Topological graph theory / Graph drawing / Outerplanar graph / Crossing number / 1-planar graph

The planar slope-number of planar partial 3-trees of bounded degree Vít Jelínek, Eva Jelínková, Jan Kratochvíl, Bernard Lidický, Marek Tesaˇr and Tomáš Vyskoˇcil Charles University in Prague University of Illin

DocID: 1rfkH - View Document

Mathematics / Convex analysis / Geometry / Convex function / Convex set / Happy ending problem / George Szekeres

Monotone crossing number of complete graphs Martin Balko, Radoslav Fulek and Jan Kynˇcl Charles University, Prague The story

DocID: 1qMxE - View Document

Graph theory / Planar graphs / 1-planar graph / Geometric graph theory / Graph drawing / Crossing number / Outerplanar graph

Straight-line Drawings of 1-planar Graphs Peter Eades1 , Seok-Hee Hong1 , Giuseppe Liotta2 , and Sheung-Hung Poon3 1 3

DocID: 1qwmK - View Document