Divisor

Results: 575



#Item
421Vector bundles / Abelian varieties / Multiplicative functions / Divisor / Riemann–Roch theorem / Linear system of divisors / Ample line bundle / Canonical bundle / Elliptic curve / Abstract algebra / Algebraic geometry / Geometry

UNIVERSITÀ DEGLI STUDI DI PADOVA Tesi di Laurea Magistrale UNIVERSITÉ DE BORDEAUX Mémoire de Master 2 ARITHMETIC

Add to Reading List

Source URL: www.algant.eu

Language: English - Date: 2014-07-01 01:58:37
422Scheme theory / Sheaf theory / Abelian varieties / Algebraic groups / Picard group / Sheaf / Group scheme / Invertible sheaf / Divisor / Abstract algebra / Algebraic geometry / Algebra

Higher genus counterexamples to relative Manin–Mumford Sean Howe [removed] Advised by prof. dr. S.J. Edixhoven.

Add to Reading List

Source URL: www.algant.eu

Language: English - Date: 2012-07-12 19:13:05
423Algebraic varieties / Vector bundles / Field theory / Algebraic surfaces / Del Pezzo surface / Ample line bundle / Divisor / Picard group / Linear system of divisors / Abstract algebra / Algebraic geometry / Geometry

Concordia University Department of Mathematics & Statistics Universit´e Paris-Sud 11 D´epartement de Math´ematiques

Add to Reading List

Source URL: www.algant.eu

Language: English - Date: 2012-07-12 19:24:42
424Polynomials / Bernoulli polynomials / Number theory / Integration by parts / Mathematical series / Mathematical analysis / Mathematics / Calculus

INTEGRATING THE ERROR IN THE DIVISOR PROBLEM Notes by Tim Jameson Let Bk be the k th Bernoulli polynomial. In particular B1 (x) = x − 21 and B2 (x) = x2 − ˜k (x) = Bk ({x}). x + 1 . Write bxc for the integer part of

Add to Reading List

Source URL: www.maths.lancs.ac.uk

Language: English - Date: 2013-12-02 05:16:52
425Arithmetic function / Expected value / Prime number theorem / Carmichael function / Number theory / Mathematics / Divisor function

Counting divisors G.J.O. Jameson, Math. Gazette[removed]The divisor function τ (n) The “divisors” of n are the positive integers (including 1 and n itself) that divide into n. We will denote by τ (n) the number o

Add to Reading List

Source URL: www.maths.lancs.ac.uk

Language: English - Date: 2014-03-31 07:11:48
426Calculus / Continuous function / Exponentiation / Polynomials / Algebra / Differential entropy / Factorization of polynomials over a finite field and irreducibility tests / Mathematics / Mathematical analysis / Exponentials

MDIV. Multiple divisor functions The functions τk For k ≥ 1, define τk (n) to be the number of (ordered) factorisations of n into k factors, in other words, the number of ordered k-tuples (j1 , j2 , . . . , jk ) with

Add to Reading List

Source URL: www.maths.lancs.ac.uk

Language: English - Date: 2014-04-08 05:12:43
427

c Garrett 2004 quiz[removed]Find the greatest common divisor and least common multiple of 589, 3211, 247 by the naive method factoring them into primes and comparing prime factors.

Add to Reading List

Source URL: www.math.umn.edu

- Date: 2004-05-17 15:52:26
    428Arithmetic functions / Analytic number theory / Prime numbers / Von Mangoldt function / Prime number theorem / Prime-counting function / Riemann hypothesis / Divisor function / Euclidean algorithm / Mathematics / Number theory / Mathematical analysis

    Proc. London Math. Soc[removed]199–247 e 2007 London Mathematical Society C

    Add to Reading List

    Source URL: www.math.boun.edu.tr

    Language: English - Date: 2009-03-05 09:53:46
    429Arithmetic / Elementary arithmetic / Least common multiple / Greatest common divisor / Euclidean algorithm / Greatest common divisor of two polynomials / Mathematics / Polynomials / Multiplicative functions

    The 69th William Lowell Putnam Mathematical Competition Saturday, December 6, 2008 A1 Let f : R2 → R be a function such that f (x, y) + f (y, z) + f (z, x) = 0 for all real numbers x, y, and z. Prove that there exists

    Add to Reading List

    Source URL: www.math.harvard.edu

    Language: English - Date: 2009-03-23 23:24:11
    430Integer sequences / Factorial / Mathematics / Number theory / Combinatorics

    HIGHER CORRELATIONS OF DIVISOR SUMS RELATED TO PRIMES I: TRIPLE CORRELATIONS D. A. Goldston1 Department of Mathematics and Computer Science, San Jose State University, San Jose, CA 95192

    Add to Reading List

    Source URL: www.math.boun.edu.tr

    Language: English - Date: 2010-07-06 09:35:04
    UPDATE