<--- Back to Details
First PageDocument Content
Discrete geometry / Medial axis / Analytic geometry / Motion planning / Euclidean shortest path / Voronoi diagram / Equidistant / Cartesian coordinate system / Geometry / Mathematics / Computational geometry
Date: 2011-07-15 08:29:23
Discrete geometry
Medial axis
Analytic geometry
Motion planning
Euclidean shortest path
Voronoi diagram
Equidistant
Cartesian coordinate system
Geometry
Mathematics
Computational geometry

Navigation Meshes for Realistic Multi-Layered Environments

Add to Reading List

Source URL: www.staff.science.uu.nl

Download Document from Source Website

File Size: 499,67 KB

Share Document on Facebook

Similar Documents

Graph theory / Mathematics / Computational complexity theory / NP-hard problems / NP-complete problems / Edsger W. Dijkstra / Combinatorial optimization / Approximation algorithms / Travelling salesman problem / Shortest path problem / Matching / Randomized algorithm

Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems∗ Karl Bringmann†1 , Christian Engels2 , Bodo Manthey3 , and B. V. Raghavendra Rao4 1

DocID: 1r9Cc - View Document

Graph theory / Mathematics / Computational complexity theory / NP-complete problems / Combinatorial optimization / NP-hard problems / Approximation algorithms / Edsger W. Dijkstra / Travelling salesman problem / Nearest neighbour algorithm / Shortest path problem / Maximal independent set

Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems Karl Bringmann1 , Christian Engels2 , Bodo Manthey3 , B. V. Raghavendra Rao4 1 Max Planck Institute for Informatics, .d

DocID: 1qzHr - View Document

Steiner tree problem / Shortest path problem / Routing algorithms / Euclidean plane geometry / Operations research / Graph theory / Theoretical computer science / Mathematics

CCCG 2007, Ottawa, Ontario, August 20–22, 2007 Approximate Shortest Descent Path on a Terrain Sasanka Roy∗ , Sachin Lodha∗, Sandip Das† and Anil Maheshwari‡ Abstract

DocID: 18Zzy - View Document

Discrete geometry / Euclidean plane geometry / Shortest path problem / Mathematical optimization / Mathematics / Theoretical computer science / Arrangement of lines

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003 On Shortest Paths in Line Arrangements T. Kavitha∗ Abstract

DocID: 18Sw7 - View Document

Network theory / Shortest path problem / NP-complete problems / Connectivity / Euclidean plane geometry / Analysis of algorithms / Path decomposition / Minimum spanning tree / Theoretical computer science / Computational complexity theory / Mathematics

The min-# problem, a hybrid error criterion for near-linear time performance Lilian Buzer∗† Abstract 2.1

DocID: 18dku - View Document