<--- Back to Details
First PageDocument Content
Geometry / Convex geometry / Convex set / Convex hull / Lyndon word / Convex function / Combinatorics / Permutation / Orthogonal convex hull / Convex analysis / Mathematics / Mathematical analysis
Date: 2010-09-29 09:28:04
Geometry
Convex geometry
Convex set
Convex hull
Lyndon word
Convex function
Combinatorics
Permutation
Orthogonal convex hull
Convex analysis
Mathematics
Mathematical analysis

Add to Reading List

Source URL: www.lama.univ-savoie.fr

Download Document from Source Website

File Size: 235,53 KB

Share Document on Facebook

Similar Documents

Innovations in permutation-based crypto Joan Daemen1,2 based on joint work with Guido Bertoni3 , Seth Hoffert, Michaël Peeters1 , Gilles Van Assche1 and Ronny Van Keer1

DocID: 1vpk0 - View Document

A so ware interface for K In this note, we propose an interface to K at the level of the sponge and duplex constructions, and inside K at the level of the K - f permutation. The purpose is twofold.

DocID: 1vlQi - View Document

Juxtaposing Catalan permutation classes with monotone ones R. Brignall∗ J. Sliaˇcan∗

DocID: 1vdyZ - View Document

Exponential Sums and Permutation Polynomials Ramachandra’s birthday Exponential Sums and

DocID: 1vc68 - View Document

Farfalle and Kravatte Parallel permutation-based cryptography Guido Bertoni1 Joan Daemen1,2 Michaël Peeters1 Gilles Van Assche1 Ronny Van Keer1 1 STMicroelectronics

DocID: 1v8QE - View Document