<--- Back to Details
First PageDocument Content
Metric space / Compact space / Hausdorff distance / Totally bounded space / Hausdorff space / Complete metric space / Topological property / Hausdorff measure / Continuous function / Topology / General topology / Metric geometry
Date: 2000-02-02 14:29:22
Metric space
Compact space
Hausdorff distance
Totally bounded space
Hausdorff space
Complete metric space
Topological property
Hausdorff measure
Continuous function
Topology
General topology
Metric geometry

Add to Reading List

Source URL: www-math.mit.edu

Download Document from Source Website

File Size: 503,33 KB

Share Document on Facebook

Similar Documents

Fractals / Mathematics / Mathematical analysis / Dimension theory / Geometry / Metric geometry / Topological spaces / Measure theory / Hausdorff dimension / MinkowskiBouligand dimension / Hausdorff measure / Fractal

Fractal Working Group 1 Coordinators: Gerald Edgar, Larry Lindsay Notes LaTeX-ed in real-time by Steven Miller Participants: Bruce Adcock, Youri Dimitrov, Gerald Edgar, Dean Eiger, Charles Estill, Larry Lindsay, Steven M

DocID: 1q1gs - View Document

Topology / Mathematics / Space / Metric geometry / General topology / Dimension theory / Fractals / Hausdorff dimension / Lebesgue measure / Base / Riemann surfaces / Differential forms on a Riemann surface

Covering the real line with translates of a zero dimensional compact set Andr´as M´ath´e∗ Abstract We construct a compact set C of Hausdorff dimension zero so that cof (N ) many translates of C cover the real line.

DocID: 1pPxL - View Document

Metric geometry / Lipschitz continuity / Hausdorff dimension / Metric space / Hausdorff measure / Separable space / Doubling space / Continuous function / Topological manifold / Complete metric space / Borel measure / Compact space

HAUSDORFF DIMENSION OF METRIC SPACES AND LIPSCHITZ MAPS ONTO CUBES ´ KELETI, ANDRAS ´ MATH ´ ´ AND ONDREJ

DocID: 1pBxS - View Document

Dimension theory / Fractals / Hausdorff dimension / Metric geometry / Borel measure / NC / Peetre theorem / Hlder condition

Measurable functions are of bounded variation on a set of dimension 1/2 Andr´as M´ath´e∗ Abstract We show that for every Lebesgue measurable function f : [0, 1] → R there exists a compact set C

DocID: 1oFMU - View Document

APPROXIMATING COMPACT RECTIFIABLE SURFACES IN HAUSDORFF MEASURE AND IN HAUSDORFF DISTANCE BY LOCALLY ACYCLIC SURFACES HAVING THE SAME BOUNDARY THIERRY DE PAUW Abstract. Given a compact 2-rectifiable set X ⊆ R3 whose bo

DocID: 1flU2 - View Document