<--- Back to Details
First PageDocument Content
Integer sequences / Combinatorics / Central limit theorem / Factorial / Transcendental numbers / Binomial coefficient / Bernoulli number / Mathematics / Mathematical analysis / Number theory
Date: 2004-05-07 15:50:19
Integer sequences
Combinatorics
Central limit theorem
Factorial
Transcendental numbers
Binomial coefficient
Bernoulli number
Mathematics
Mathematical analysis
Number theory

Add to Reading List

Source URL: www.renyi.hu

Download Document from Source Website

File Size: 3,40 MB

Share Document on Facebook

Similar Documents

Transcendental numbers / Number theory / E / Exponentials / LindemannWeierstrass theorem / Pi / Constructible universe / E-function / SchneiderLang theorem / Auxiliary function

Algebra 2. Teorema di Lindemann-Weierstrass. Roma, gennaio 2010 In this note we present Baker’s proof of the Lindemann-Weierstrass Theorem. Let Q denote the algebraic closure of Q inside C.

DocID: 1pFaV - View Document

Circuit complexity / NC / Lemmas / Transcendental numbers

Errata for ”Adaptive Covering Codes in the q-ary Hypercube” January 14, 2013 Location Statement of Lemma 4, third sentence

DocID: 1p33D - View Document

Analytic functions / Trigonometry / Exponentials / Dimensionless numbers / Ratios / Taylor series / Floating point / Sine / Inverse trigonometric functions / Hyperbolic function / Exponentiation / Transcendental function

BIT 41(3), pp. 540–562, 2001 RIGOROUS AND PORTABLE STANDARD FUNCTIONS SIEGFRIED M. RUMP Inst. of Computer Science III, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, 21071 Hamburg, Germany. rump@tu-harbur

DocID: 1oKam - View Document

Mathematics / Mathematical analysis / Algebra / Polynomials / Transcendental numbers / Diophantine approximation / Coding theory / Algebraic function / Elliptic curve

ALGEBRAIC STRUCTURE AND DEGREE REDUCTION Let S ⊂ Fn . We define deg(S) to be the minimal degree of a non-zero polynomial that vanishes on S. We have seen that for a finite set S, deg(S) ≤ n|S|1/n . In fact, we can sa

DocID: 1nUp8 - View Document

Mathematical analysis / Mathematics / Number theory / Integer sequences / Meromorphic functions / Combinatorics / Polynomials / Bernoulli polynomials / Bernoulli number / Riemann zeta function / Bessel function / Transcendental number

A MODIFIED BERNOULLI NUMBER D. Zagier The classical Bernoulli numbers Bn , defined by the generating function ∞

DocID: 1nsMX - View Document