<--- Back to Details
First PageDocument Content
Linear algebra / Convex hull / Convex function / Convex set / Vector space / Basis / Norm / Bounded set / Convex cone / Algebra / Mathematics / Convex analysis
Date: 2014-12-17 10:01:57
Linear algebra
Convex hull
Convex function
Convex set
Vector space
Basis
Norm
Bounded set
Convex cone
Algebra
Mathematics
Convex analysis

Monitoring Distributed Streams using Convex Decompositions 1 1

Add to Reading List

Source URL: www.vldb.org

Download Document from Source Website

File Size: 918,45 KB

Share Document on Facebook

Similar Documents

Polynomial Time Interactive Proofs for Linear Algebra with Exponential Matrix Dimensions and Scalars Given by Polynomial Time Circuits In memory of Wen-tsun Wu–Jean-Guillaume Dumas

DocID: 1xUE0 - View Document

Concurrent computing / Computing / Computer programming / Parallel computing / Numerical linear algebra / Numerical software / Application programming interfaces / Fortran / OpenACC / Math Kernel Library / OpenMP / ScaLAPACK

1 Roadmap for the Development of a Linear Algebra Library for Exascale Computing SLATE: Software for Linear Algebra Targeting Exascale

DocID: 1xUyc - View Document

Mathematics / Algebra / Cryptography / Computational number theory / Lattice points / Linear algebra / Lattice-based cryptography / Lattice reduction / LenstraLenstraLovsz lattice basis reduction algorithm / Hermite normal form / Euclidean algorithm / Integer relation algorithm

Recent Progress in Linear Algebra and Lattice Basis Reduction Gilles Villard CNRS, ENS de Lyon, INRIA, UCBL, Université de Lyon Laboratoire LIP

DocID: 1xUmT - View Document

Numerical software / Numerical analysis / Numerical linear algebra / Mathematical software / Computing / LAPACK / Basic Linear Algebra Subprograms / Math Kernel Library / OpenMP / Graphics processing unit / Cholesky decomposition / Tile

3 Designing SLATE SLATE: Software for Linear Algebra Targeting Exascale Jakub Kurzak Panruo Wu

DocID: 1xT5s - View Document

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1vrLR - View Document