<--- Back to Details
First PageDocument Content
Z notation / Set theory / Zermelo–Fraenkel set theory / Axiom of choice / Axiom / Large cardinal / S / Philosophy of mathematics / Cardinal number / Mathematical logic / Logic / Mathematics
Date: 2013-01-22 04:56:23
Z notation
Set theory
Zermelo–Fraenkel set theory
Axiom of choice
Axiom
Large cardinal
S
Philosophy of mathematics
Cardinal number
Mathematical logic
Logic
Mathematics

Add to Reading List

Source URL: www.super-scientist-guru-rupnathji.netau.net

Download Document from Source Website

File Size: 1,57 MB

Share Document on Facebook

Similar Documents

Appendix 2: The Axiom of Choice In this appendix we want to prove Theorem 1.5. Theorem 1.5. The following set theoretic axioms are equivalentAxiom of Choice) If X is a nonempty set, then there is a map φ : P(X)

DocID: 1uaDy - View Document

The axiom of choice How (not) to choose innitely many socks Regula Krapf University of Bonn April 27, 2016

DocID: 1s6va - View Document

Graph theory / NP-complete problems / Spanning tree / Axiom of choice / Graph coloring / Tree

arXiv:1602.07940v2 [physics.data-an] 6 MayThe scaling of the minimum sum of edge lengths in uniformly random trees Juan Luis Esteban1 , Ramon Ferrer-i-Cancho2 and Carlos G´

DocID: 1qYvh - View Document

Graph theory / Mathematics / Spanning tree / Axiom of choice / Tree / Minimum spanning tree / Ear decomposition / Graph connectivity / NP-complete problems / Biconnected component / Vertex cover

Downloadedto. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php SIAM J. COMPUT. Vol. 2, No. 4, DecemberSET MERGING ALGORITHMS*

DocID: 1pVrn - View Document

Determinacy / Axioms of set theory / Descriptive set theory / Axiom of determinacy / Axiom of choice / L / Borel determinacy theorem / Wadge hierarchy

Introduction Open games Determinacy and the Axiom of Choice Axiom of Determinacy The Perfect Subset Property

DocID: 1p68A - View Document