<--- Back to Details
First PageDocument Content
Orientation / Angle / Rigid bodies / 3D computer graphics / Euclidean geometry / Inertial measurement unit / Gyroscope / Yaw / Quaternions and spatial rotation / Rotation matrix / Kalman filter / Euler angles
Date: 2014-10-23 14:30:01
Orientation
Angle
Rigid bodies
3D computer graphics
Euclidean geometry
Inertial measurement unit
Gyroscope
Yaw
Quaternions and spatial rotation
Rotation matrix
Kalman filter
Euler angles

Robust Sensor Fusion for Robot Attitude Estimation

Add to Reading List

Source URL: www.ais.uni-bonn.de

Download Document from Source Website

File Size: 293,98 KB

Share Document on Facebook

Similar Documents

Robotics / Robot control / Artificial intelligence / Visual servoing / Kalman filter / Simultaneous localization and mapping / Pose / Video tracking / Quaternions and spatial rotation / Motion planning

International Symposium on Experimental Robotics (ISER), 2014 Online Camera Registration for Robot Manipulation Neil Dantam, Heni Ben Amor, Henrik Christensen, and Mike Stilman∗ Institute for Robotics and Intelligent

DocID: 1qO1L - View Document

Geometry / Mathematics / Algebra / Orientation / Classical mechanics / Kinematics / Rotational symmetry / Analytic geometry / Rotation / Angle / Curl / Quaternions and spatial rotation

Microsoft Word - Rotate1WS.doc

DocID: 1qnxr - View Document

Orientation / Angle / Rigid bodies / 3D computer graphics / Euclidean geometry / Inertial measurement unit / Gyroscope / Yaw / Quaternions and spatial rotation / Rotation matrix / Kalman filter / Euler angles

Robust Sensor Fusion for Robot Attitude Estimation

DocID: 1pzlc - View Document

Vectors / Analytic geometry / Vector calculus / Linear algebra / Elementary mathematics / Euclidean vector / Quaternions and spatial rotation / Rotation / Cross product / Computer mouse / Kinematics / Cartesian coordinate system

Outline CE318: High-level Games Development Lecture 2: 3D Games and User Input 1

DocID: 1poBb - View Document

Quaternions / Rotations in 4-dimensional Euclidean space / Quaternions and spatial rotation / Rotation matrix / Versor / Rotation / Matrix / Orthogonal matrix / Orientation / Rotation formalisms in three dimensions / Charts on SO

A MATRIX–BASED PROOF OF THE QUATERNION REPRESENTATION THEOREM FOR FOUR-DIMENSIONAL ROTATIONS arXiv:math/0501249v1 [math.GM] 16 Jan 2005

DocID: 1p4Ge - View Document