<--- Back to Details
First PageDocument Content
Combinatorics / Arithmetic / Mathematical notation / Summation / Euclidean algorithm / Factorial / Collatz conjecture / Iterated function / Characterizations of the exponential function / Mathematics / Number theory / Integer sequences
Date: 2005-12-13 11:54:44
Combinatorics
Arithmetic
Mathematical notation
Summation
Euclidean algorithm
Factorial
Collatz conjecture
Iterated function
Characterizations of the exponential function
Mathematics
Number theory
Integer sequences

Add to Reading List

Source URL: www.afjarvis.staff.shef.ac.uk

Download Document from Source Website

File Size: 64,57 KB

Share Document on Facebook

Similar Documents

How many times can a function be iterated? Massimo Gobbino Universit`a degli Studi di Pisa Dipartimento di Matematica Applicata “Ulisse Dini” Via Filippo Buonarroti 1c, 56127 PISA, Italy e-mail: i.i

DocID: 1uOyj - View Document

Algebra / Mathematics / Abstract algebra / Quadratic forms / Pfister form / U-invariant / Sheaf / Iterated function

251 Documenta Math. Dimensions of Anisotropic Indefinite Quadratic Forms II

DocID: 1rrCp - View Document

Geometry / Mathematics / Space / Triangles / Triangle geometry / Curves / Topological spaces / Fractal curves / Sierpinski triangle / Iterated function system / Triangle / Affine transformation

Our project involved visualizing the fractals generated from systems of contraction mappings known as an iterated function system (IFS). If we iterate the family of functions starting with an arbitrary set, we get a sequ

DocID: 1rkQV - View Document

Fractals / Mathematical analysis / Mathematics / Dynamical systems / Analysis / Iterated function system / Chaos theory / Fractal / Attractor / Iterated function / Fractal compression / Collage theorem

ERGODIC THEORY, FRACTAL TOPS AND COLOUR STEALING MICHAEL BARNSLEY Abstract. A new structure that may be associated with IFS and superIFS is described. In computer graphics applications this structure can be rendered usin

DocID: 1r0E2 - View Document

Stochastic processes / Probability distributions / Logarithms / Probability theory / Random walk / Normal distribution / Stable distribution / Slowly varying function / Law of the iterated logarithm

A NNALES DE L’I. H. P., SECTION B M ICHAEL B. M ARCUS JAY ROSEN Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Lévy

DocID: 1oEmD - View Document