<--- Back to Details
First PageDocument Content
Machine learning / Information retrieval / Numerical analysis / Mathematical optimization / Learning to rank / Natural language processing / Ranking SVM / Simulated annealing / Algorithm / Information science / Mathematics / Science
Date: 2013-04-05 04:39:48
Machine learning
Information retrieval
Numerical analysis
Mathematical optimization
Learning to rank
Natural language processing
Ranking SVM
Simulated annealing
Algorithm
Information science
Mathematics
Science

D:/D_drive/Maryam/Papers/WWW2011_newFormat/fr370-karimzadehgan.dvi

Add to Reading List

Source URL: labs.yahoo.com

Download Document from Source Website

File Size: 490,44 KB

Share Document on Facebook

Similar Documents

Cascading Bandits: Learning to Rank in the Cascade Model Branislav Kveton Adobe Research, San Jose, CA Csaba Szepesv´ari Department of Computing Science, University of Alberta

DocID: 1uHeV - View Document

Learning to Rank By Aggregating Expert Preferences Maksims N. Volkovs Hugo Larochelle Richard S. Zemel

DocID: 1tUcb - View Document

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting Ping Li ∗ Dept. of Statistical Science Cornell University

DocID: 1tgDg - View Document

Tagging data as implicit feedback for learning-to-rank Beate Navarro Bullock Robert Jäschke Andreas Hotho

DocID: 1soOw - View Document

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries Matthew Lease1 , James Allan2, and Bruce Croft2 1 Brown Laboratory for Linguistic Information Processing (BLLIP)

DocID: 1sm9K - View Document