<--- Back to Details
First PageDocument Content
Preconditioner / Sparse matrix / Conjugate gradient method / Cholesky decomposition / Lis / Multigrid method / QR decomposition / LU decomposition / Incomplete LU factorization / Numerical linear algebra / Numerical analysis / Mathematics
Date: 2012-04-17 03:51:43
Preconditioner
Sparse matrix
Conjugate gradient method
Cholesky decomposition
Lis
Multigrid method
QR decomposition
LU decomposition
Incomplete LU factorization
Numerical linear algebra
Numerical analysis
Mathematics

Sparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs

Add to Reading List

Source URL: www.iue.tuwien.ac.at

Download Document from Source Website

File Size: 125,45 KB

Share Document on Facebook

Similar Documents

A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting∗ Xiaoye S. Li† Meiyue Shao‡

DocID: 1tG2H - View Document

Numerical linear algebra / Mathematics / Nested dissection / Preconditioner / Graph factorization / Sparse matrix / Graph partition / Parallel computing / Basic Linear Algebra Subprograms / Incomplete LU factorization

Factorization-based Sparse Solvers and Preconditioners X. Sherry Li Lawrence Berkeley National Laboratory

DocID: 1qu53 - View Document

Algebra / Numerical linear algebra / Mathematics / Preconditioner / Euler equations / Equation solving / Domain decomposition methods / Krylov subspace / Equations of motion / Schur complement / Incomplete LU factorization / System of linear equations

A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids Jason E. Hicken∗ and David W. Zingg †

DocID: 1qp2p - View Document

Numerical linear algebra / Incomplete LU factorization / Preconditioner / Computational fluid dynamics / Iterative method / Lis / NewtonKrylov method / Schur complement / Matrix / Generalized minimal residual method / SLEPc

Comparison of parallel preconditioners for a Newton-Krylov flow solver Jason E. Hicken, Michal Osusky, and David W. Zingg 1 Introduction Analysis of the results from the AIAA Drag Prediction workshops (Mavriplis et al,

DocID: 1paEo - View Document