<--- Back to Details
First PageDocument Content
Numerical linear algebra / Matrix theory / Linear algebra / Mathematical physics / Numerical analysis / Generalized minimal residual method / Lloyd N. Trefethen / Matrix decomposition / Singular value decomposition / Matrix / Iterative method / Eigenvalues and eigenvectors
Date: 2014-08-21 18:45:30
Numerical linear algebra
Matrix theory
Linear algebra
Mathematical physics
Numerical analysis
Generalized minimal residual method
Lloyd N. Trefethen
Matrix decomposition
Singular value decomposition
Matrix
Iterative method
Eigenvalues and eigenvectors

Math 515, Numerical Analysis Fall 2014 ProfessorOfficeOffice hours ...

Add to Reading List

Source URL: www.mathcs.emory.edu

Download Document from Source Website

File Size: 89,48 KB

Share Document on Facebook

Similar Documents

CRD: Fast Co-clustering on Large Datasets Utilizing Sampling-Based Matrix Decomposition Feng Pan, Xiang Zhang, and Wei Wang Dept. of Computer Science, University of North Carolina at Chapel Hill Chapel Hill, NC, US

DocID: 1ulFw - View Document

Greedy algorithm for large scale Nonnegative matrix/tensor decomposition ✦

DocID: 1tDWz - View Document

When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? David Donoho Department of Statistics Stanford University

DocID: 1t1qp - View Document

CS168: The Modern Algorithmic Toolbox Lecture #9: The Singular Value Decomposition (SVD) and Low-Rank Matrix Approximations Tim Roughgarden & Gregory Valiant∗ April 25, 2016

DocID: 1rHEk - View Document

Laboratoire de l’Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668 LSP Matrix Decomposition Revisited

DocID: 1ruJ8 - View Document