<--- Back to Details
First PageDocument Content
Information science / Information retrieval / Internet search engines / Query expansion / Google Search / Humancomputer information retrieval / Learning to rank
Date: 2011-06-25 11:59:44
Information science
Information retrieval
Internet search engines
Query expansion
Google Search
Humancomputer information retrieval
Learning to rank

C:/Users/kevynct/Documents/sigir11-enir/sigir2011-rd-position.dvi

Add to Reading List

Source URL: select.cs.cmu.edu

Download Document from Source Website

File Size: 65,07 KB

Share Document on Facebook

Similar Documents

Cascading Bandits: Learning to Rank in the Cascade Model Branislav Kveton Adobe Research, San Jose, CA Csaba Szepesv´ari Department of Computing Science, University of Alberta

DocID: 1uHeV - View Document

Learning to Rank By Aggregating Expert Preferences Maksims N. Volkovs Hugo Larochelle Richard S. Zemel

DocID: 1tUcb - View Document

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting Ping Li ∗ Dept. of Statistical Science Cornell University

DocID: 1tgDg - View Document

Tagging data as implicit feedback for learning-to-rank Beate Navarro Bullock Robert Jäschke Andreas Hotho

DocID: 1soOw - View Document

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries Matthew Lease1 , James Allan2, and Bruce Croft2 1 Brown Laboratory for Linguistic Information Processing (BLLIP)

DocID: 1sm9K - View Document