<--- Back to Details
First PageDocument Content
Web search query / Document retrieval / Text Retrieval Conference / Query language / Relevance feedback / Query expansion / Relevance / Faceted search / IR evaluation / Information science / Information retrieval / XML-Retrieval
Date: 2006-10-19 07:55:23
Web search query
Document retrieval
Text Retrieval Conference
Query language
Relevance feedback
Query expansion
Relevance
Faceted search
IR evaluation
Information science
Information retrieval
XML-Retrieval

Add to Reading List

Source URL: eprints.eemcs.utwente.nl

Download Document from Source Website

File Size: 234,73 KB

Share Document on Facebook

Similar Documents

Machine learning / Learning / Artificial intelligence / Meta learning / Support vector machine / Supervised learning / Training /  test /  and validation sets

Natural Language to Structured Query Generation via Meta-Learning Po-Sen Huang 1 Chenglong Wang 2 Rishabh Singh 3 * Wen-tau Yih 4 Xiaodong He 5 * 1. Introduction Conventional supervised training is a pervasive paradigm

DocID: 1xUL3 - View Document

Machine learning / Computing / Data management / Artificial intelligence / Computational neuroscience / Artificial neural networks / Computational linguistics / Meta learning / Supervised learning / Support vector machine / Deep learning / SQL syntax

Natural Language to Structured Query Generation via Meta-Learning Po-Sen Huang? , Chenglong Wang† , Rishabh Singh? , Wen-tau Yih‡ , Xiaodong He∗ ? Microsoft Research, † University of Washington, ‡ Allen Instit

DocID: 1xTvC - View Document

Datafun a functional query language Michael Arntzenius http://www.rntz.net/datafun

DocID: 1vhwi - View Document

A Functorial Query Language Ryan Wisnesky, David Spivak Department of Mathematics Massachusetts Institute of Technology {wisnesky, dspivak}@math.mit.edu

DocID: 1v3tm - View Document

Structured Query Language (SQL) Huub de Beer Eindhoven, 4 juni 2011 Database: in essentie

DocID: 1v0AV - View Document