<--- Back to Details
First PageDocument Content
Martingale theory / Generating functions / Game theory / Martingale / Probability-generating function / Probability density function / Wiener process / Poisson processes / Negative binomial distribution / Statistics / Probability theory / Stochastic processes
Date: 2007-12-04 15:45:18
Martingale theory
Generating functions
Game theory
Martingale
Probability-generating function
Probability density function
Wiener process
Poisson processes
Negative binomial distribution
Statistics
Probability theory
Stochastic processes

Your name: STATISTICS 204 FALL[removed]FINAL

Add to Reading List

Source URL: www.stat.berkeley.edu

Download Document from Source Website

File Size: 65,62 KB

Share Document on Facebook

Similar Documents

Computing / Software engineering / Computer programming / Object-oriented programming languages / Abstract data types / Object / Java / Iterator / Scala / Abstraction / Java collections framework / Object-oriented programming

Proceedings: Equality and Hashing for (Almost) Free: Generating Implementations from Abstraction Functions

DocID: 1xTdH - View Document

Generating Kummer Type Formulas for Hypergeometric Functions Nobuki Takayama Kobe University, Rokko, Kobe, Japan, Abstract. Kummer type formulas are identities of hypergeometric serie

DocID: 1v9y0 - View Document

Algebra / Mathematics / Quadratic forms / Lattice points / Abstract algebra / Modular form / Leech lattice / E8 lattice / Lattice / Modular lattice / Unimodular lattice

arXiv:math/0509316v4 [math.NT] 8 AprOn the Integrality of nth Roots of Generating Functions Nadia Heninger(1) Computer Science Department Princeton University

DocID: 1uqWs - View Document

Generating Size­Parameterized Functions for  Circuit Simulation Using Template Haskell  Christoph Herrmann University of Passau Talk at the IFIP­WG 2.11 Meeting

DocID: 1tgL5 - View Document

On the geometry of the Hamilton-Jacobi equation for generating functions Miguel Vaquero Instituto de Ciencias Matem´ aticas, CSIC, Spain

DocID: 1siqs - View Document