<--- Back to Details
First PageDocument Content
Options / Investment / Local volatility / Volatility smile / Volatility / Implied volatility / Black–Scholes / Log-normal distribution / Greeks / Mathematical finance / Financial economics / Finance
Date: 2002-11-27 13:38:29
Options
Investment
Local volatility
Volatility smile
Volatility
Implied volatility
Black–Scholes
Log-normal distribution
Greeks
Mathematical finance
Financial economics
Finance

Add to Reading List

Source URL: www.damianobrigo.it

Download Document from Source Website

File Size: 235,58 KB

Share Document on Facebook

Similar Documents

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP2 Formule de Black–Scholes – Monte Carlo pour une option portant sur plusieurs sous–jacents ´ Pardoux

DocID: 1sVnD - View Document

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP1 Formule de Black–Scholes – Monte Carlo, R´eduction de variance ´ Pardoux E.

DocID: 1sTgm - View Document

On the Emergence of Delta-Vega Hedging in the Black and Scholes Model Sebastian Herrmann ETH Zürich Joint work with Johannes Muhle-Karbe ETH Risk Day 2015

DocID: 1sLS7 - View Document

Economy / Maarten / Tilburg / Econometrics / BlackScholes model / Quantitative analyst / Mathematics

nekst Volume 19, fourth edition, June 2011 Black-Scholes Model in Context Interview Robert C. Merton

DocID: 1qRdw - View Document

Mathematical finance / Economy / Finance / Money / BlackScholes equation / BlackScholes model / Option / Volatility / Quantitative analyst / Futures contract / Geometric Brownian motion / Stochastic volatility

The derivation of the basic Black-Scholes options pricing equation follows from imposing the condition that a riskless por tfolio made up of stock and options must return the same interest rate as other riskless assets,

DocID: 1qcrE - View Document