<--- Back to Details
First PageDocument Content
Fourier analysis / Harmonic function / Potential theory / Vector space / Matrix / Heat equation / Markov chain / Dirac delta function
Date: 2009-07-06 12:44:44
Fourier analysis
Harmonic function
Potential theory
Vector space
Matrix
Heat equation
Markov chain
Dirac delta function

195 Documenta Math. The Max-Plus Martin Boundary

Add to Reading List

Source URL: www.math.uiuc.edu

Download Document from Source Website

File Size: 489,20 KB

Share Document on Facebook

Similar Documents

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014 A PITCH SALIENCE FUNCTION DERIVED FROM HARMONIC FREQUENCY DEVIATIONS FOR POLYPHONIC MUSIC ANALYSIS A. Degani,

DocID: 1uPv5 - View Document

Mathematical analysis / Mathematics / Operator theory / Complex analysis / Differential forms / Partial differential equations / Quantum mechanics / Heat equation / Hilbert space / Harmonic function / Hardy space / Fourier transform

235 Documenta Math. Laplace Transform Representations and Paley–Wiener Theorems

DocID: 1rqC6 - View Document

Harmonic analysis / Mathematics / Discrete geometry / Kakeya set / Real analysis / Limit of a function / NC / Dyadic cubes / Differential forms on a Riemann surface

ON Lp BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS AND THE MINKOWSKI DIMENSION IN R2 U. KEICH Abstract. We prove that the bound on the Lp norms of the Kakeya type maximal functions studied by Cordoba [2], and by

DocID: 1rpJG - View Document

Physics / Quantum mechanics / Molecular physics / Quantum chemistry / Schrdinger equation / Quantum harmonic oscillator / Rigid rotor / BornOppenheimer approximation / Erwin Schrdinger / Waveparticle duality / Wave function

MolecularStructureDiatomic.nb

DocID: 1rp7o - View Document

Abstract algebra / Sine / Sheaf / Loss function / Mathematics / Harmonic analysis / Chemical bonding

Dynare Working Papers Series http://www.dynare.org/wp/ Choosing the variables to estimate singular DSGE models: Comment

DocID: 1rjp4 - View Document