<--- Back to Details
First PageDocument Content
Regression analysis / Econometrics / Estimation theory / Parametric statistics / Least squares / Linear regression / Ordinary least squares / Heteroscedasticity / Instrumental variable / Errors and residuals / Normal distribution / Homoscedasticity
Date: 2016-02-07 09:53:05
Regression analysis
Econometrics
Estimation theory
Parametric statistics
Least squares
Linear regression
Ordinary least squares
Heteroscedasticity
Instrumental variable
Errors and residuals
Normal distribution
Homoscedasticity

ChannellingFisherAppendix

Add to Reading List

Source URL: personal.lse.ac.uk

Download Document from Source Website

File Size: 57,65 KB

Share Document on Facebook

Similar Documents

Graham Neubig – Non-parametric Bayesian Statistics Non-parametric Bayesian Statistics Graham Neubig

DocID: 1uQOM - View Document

Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics Masayo Haneda Peter M.W. Knijnenburg Harry A.G. Wijshoff

DocID: 1tDtm - View Document

Proceedings of the 60th ISI World Statistics Congress, 26-31 July 2015, Rio de Janeiro, Brazil p.3981 Parametric or nonparametric: the FIC approach for stationary time series Gudmund Horn Hermansen*

DocID: 1tnWq - View Document

Statistics / Regression analysis / Estimation theory / Parametric statistics / Least squares / Linear regression / Ordinary least squares / Incremental validity / SAT / University of California / Variance / T-statistic

Microsoft Word - satpaper.forjoe.finalrevision.doc

DocID: 1rnIq - View Document

Statistics / Estimation theory / Regression analysis / Statistical theory / Parametric statistics / Signal processing / Ordinary least squares / Autocorrelation / Estimator / Generalized method of moments / Robust statistics / Linear regression

On the finite sample properties of pre-test estimators of spatial models Gianfranco Piras∗ Ingmar R. Prucha†

DocID: 1rm2t - View Document