<--- Back to Details
First PageDocument Content
Estimation theory / Statistical theory / Maximum likelihood estimation / Bias of an estimator / Estimator / Parameter / Likelihood function / Standard deviation / Variance function
Date: 2011-04-15 15:33:05
Estimation theory
Statistical theory
Maximum likelihood estimation
Bias of an estimator
Estimator
Parameter
Likelihood function
Standard deviation
Variance function

Local likelihood estimation for nonstationary random fields

Add to Reading List

Source URL: www.stat.ucdavis.edu

Download Document from Source Website

File Size: 852,21 KB

Share Document on Facebook

Similar Documents

Likelihood Function .... Method of Moments ...........

DocID: 1vn7a - View Document

NOISE ROBUST SPEECH RECOGNITION USING GAUSSIAN BASIS FUNCTIONS FOR NON-LINEAR LIKELIHOOD FUNCTION APPROXIMATION Chris Pal½ ¾ , Brendan Frey½ ¾ and Trausti Kristjansson ½ ¾ ½ ¾

DocID: 1uuy9 - View Document

The shape of the one-dimensional phylogenetic likelihood function

DocID: 1u9Og - View Document

Is Bayes posterior just quick and dirty confidence? D.A.S. Fraser March 9, 2009 Abstract Bayesintroduced the observed likelihood function to statistical inference and provided a weight function to calibrate the p

DocID: 1t5Vr - View Document

On the Application of Automatic Differentiation to the Likelihood Function for Dynamic General Equilibrium Models

DocID: 1ryLK - View Document