<--- Back to Details
First PageDocument Content
Human–computer interaction / Information retrieval / Hypertext / Personalization / World Wide Web / Recommender system / User profile / User model / User-generated content / Information science / Software / Collective intelligence
Date: 2013-02-01 09:30:06
Human–computer interaction
Information retrieval
Hypertext
Personalization
World Wide Web
Recommender system
User profile
User model
User-generated content
Information science
Software
Collective intelligence

Add to Reading List

Source URL: sat.researchstudio.at

Download Document from Source Website

File Size: 528,44 KB

Share Document on Facebook

Similar Documents

Collective intelligence / Information systems / Information science / Information / E-commerce / Computing / Recommender system / Cold start / Food / Preference elicitation / Nutrition / Personalization

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1xVQo - View Document

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1tE3G - View Document

Privacy Assessment of Data Flow Graphs for an Advanced Recommender System in the Smart Grid Fabian Knirsch1 , Dominik Engel1 , Cristian Neureiter1 , Marc Frincu2 , and Viktor Prasanna2 1

DocID: 1sXaB - View Document

A Novel Recommender System in IoT Remo Manuel Frey1, Runhua Xu1, and Alexander Ilic2 I. ABSTRACT In Internet of Things (IoT), selling smart physical objects together with a compatible mobile app becomes an upcoming

DocID: 1sIQs - View Document

RiVal – A Toolkit to Foster Reproducibility in Recommender System Evaluation Alan Said Alejandro Bellogín

DocID: 1sgiJ - View Document