<--- Back to Details
First PageDocument Content
Algebras / Monoidal categories / Ring theory / Quantum group / Lie algebra / Universal enveloping algebra / Associative algebra / Tensor algebra / Formal group / Abstract algebra / Hopf algebras / Representation theory
Date: 1999-12-10 03:08:10
Algebras
Monoidal categories
Ring theory
Quantum group
Lie algebra
Universal enveloping algebra
Associative algebra
Tensor algebra
Formal group
Abstract algebra
Hopf algebras
Representation theory

Add to Reading List

Source URL: www.mathematik.uni-muenchen.de

Download Document from Source Website

File Size: 120,13 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Non-associative algebra / Conformal field theory / Lie algebras / Vertex operator algebra / Algebra over a field / Vector space / Universal enveloping algebra

Introduction to Vertex Algebras Mike Welby 6th November, 2015 Mike Welby

DocID: 1mXCt - View Document

Mathematical structures / Algebraic structures / Algebras / Algebra over a field / Structure / Term algebra / Boolean algebra / Universal enveloping algebra / Clifford algebra / Abstract algebra / Algebra / Mathematics

A Hidden Herbrand Theorem: Combining the Object and Logic Paradigms Joseph Goguen Dept. Computer Science & Engineering University of California, San Diego

DocID: 18mb4 - View Document

Monoidal categories / Representation theory / Algebras / Lie groups / Butcher group / Universal enveloping algebra / Lie algebra / Coalgebra / Bialgebra / Abstract algebra / Mathematics / Hopf algebras

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Algebraic Structures on Ordered Rooted Trees and Their Significance to Lie Group Integrators by

DocID: 13xjC - View Document

Hopf algebras / Ring theory / Lie algebras / Quantum group / Universal enveloping algebra / Steenrod algebra / Clifford algebra / Abstract algebra / Algebra / Representation theory

ON QUANTUM GROUP GLp,q (2) arXiv:q-algJan 1997 Tanya Khovanova January 28, 1997

DocID: 13w3b - View Document

Representation theory / Ring theory / Lie algebras / Quantum group / Universal enveloping algebra / Weight / Adjoint functors / Graded algebra / Frobenius algebra / Abstract algebra / Algebras / Hopf algebras

QUANTUM GROUPS AND REPRESENTATIONS WITH HIGHEST WEIGHT Joseph Bernstein and Tanya Khovanova arXiv:q-algApr 1997

DocID: 13qDm - View Document