<--- Back to Details
First PageDocument Content
Projective geometry / Riemann surfaces / Twistor space / Twistor theory / Penrose transform / Harmonic function / Riemann sphere / Hopf fibration / Harmonic map / Geometry / Topology / Mathematics
Projective geometry
Riemann surfaces
Twistor space
Twistor theory
Penrose transform
Harmonic function
Riemann sphere
Hopf fibration
Harmonic map
Geometry
Topology
Mathematics

Add to Reading List

Source URL: people.math.jussieu.fr

Download Document from Source Website

Share Document on Facebook

Similar Documents

Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014 A PITCH SALIENCE FUNCTION DERIVED FROM HARMONIC FREQUENCY DEVIATIONS FOR POLYPHONIC MUSIC ANALYSIS A. Degani,

DocID: 1uPv5 - View Document

Mathematical analysis / Mathematics / Operator theory / Complex analysis / Differential forms / Partial differential equations / Quantum mechanics / Heat equation / Hilbert space / Harmonic function / Hardy space / Fourier transform

235 Documenta Math. Laplace Transform Representations and Paley–Wiener Theorems

DocID: 1rqC6 - View Document

Harmonic analysis / Mathematics / Discrete geometry / Kakeya set / Real analysis / Limit of a function / NC / Dyadic cubes / Differential forms on a Riemann surface

ON Lp BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS AND THE MINKOWSKI DIMENSION IN R2 U. KEICH Abstract. We prove that the bound on the Lp norms of the Kakeya type maximal functions studied by Cordoba [2], and by

DocID: 1rpJG - View Document

Physics / Quantum mechanics / Molecular physics / Quantum chemistry / Schrdinger equation / Quantum harmonic oscillator / Rigid rotor / BornOppenheimer approximation / Erwin Schrdinger / Waveparticle duality / Wave function

MolecularStructureDiatomic.nb

DocID: 1rp7o - View Document

Abstract algebra / Sine / Sheaf / Loss function / Mathematics / Harmonic analysis / Chemical bonding

Dynare Working Papers Series http://www.dynare.org/wp/ Choosing the variables to estimate singular DSGE models: Comment

DocID: 1rjp4 - View Document